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Abstract. We address the problem of the density of intrinsically uni-
versal cellular automata among cellular automata or a subclass of cel-
lular automata. We show that captive cellular automata are almost all
intrinsically universal. We show however that intrinsic universality is un-
decidable for captive cellular automata. Finally, we show that almost all
cellular automata have no non-trivial sub-automaton.
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Cellular automata are simple discrete dynamical systems involving full uni-
formity and perfect synchronism. They are capable of producing very complex
behaviours despite their apparent simplicity and therefore constitute an ideal-
istic model to study the paradigm of complex systems. Besides its ability to
capture any sequential computations, the model of cellular automata possesses
a natural notion of intrinsic universality. A cellular automaton is intrinsically
universal if it is able to directly simulate any other cellular automaton. There
is no general definition of what is an acceptable simulation but in [1] a natural
and rather minimal class of acceptable simulation is introduced and give rise to
the formal notion of intrinsic universality adopted in this paper.

Since the very beginning of cellular automata theory great efforts have been
devoted to the design of particular cellular automata having some desired prop-
erty. The property of being intrinsically universal was of course especially studied
and the quest for the smallest intrinsically universal cellular automaton has now
almost reached the limits (closed in dimension 2 and higher by [2] and reduced
to a 4 states gap in dimension 1 by [3]). However, these tricky constructions only
give results concerning sufficient conditions and do not respond to the problem
of how strong is the intrinsic universality requirement for a cellular automaton
in general, or, said differently, how many different ways there are to achieve in-
trinsic universality. Unfortunately, this converse problem reveals to be difficult
since the set of non intrinsically universal cellular automata is not recursively
enumerable (see [1]) whereas the set of intrinsically universal one is.

In the present paper we tackle this problem using a different point of view:
we study density of intrinsically universal cellular automata. Our main result
is that a simple hypothesis on the local transition map gives rise to a class of
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cellular automata (namely captive cellular automata) for which density follows a
zero-one law over an interesting class of properties. We then show that intrinsic
universality belongs to that class and, using the zero-one law, that almost all
captive cellular automata are intrinsically universal. We show however that the
set of non intrinsically universal captive cellular automata is not recursively
enumerable. Back to the general case, we show that almost all cellular automata
lack of any non-trivial local structure making a strong difference with the captive
case.

1 Formal framework

Although many results extend to higher dimensions, we will only consider one-
dimensional ca. Besides, this paper is not concerned with comparisons between
different shapes of neighbourhood and we consider only von Neumann-like
neighbourhood (connected and centred). Formally a ca is triple A = (A, r, fA)
where A is a finite set of states, r is a positive integer (the radius of the neighbour-
hood) and A is a map from A2r+1 to A. Configurations are maps from Z to A giv-
ing each cell a particular state. The local transition function fA induces a global
evolution rule on configurations denoted A and defined as follows: ∀c ∈ AZ, A(c)
is such that ∀i ∈ Z,

(
A(c)

)
(i) = fA

(
c(i− r), c(i− r + 1), . . . , c(i+ r)

)
. In the

sequel, when considering a ca A (resp. B), we implicitly refer to the triple
(A, rA,A) (resp. (B, rB,B)) where the same symbol A (resp. B) denotes both
the local and the global map.

Local maps in ca are arbitrary, but in this paper we pay a special attention
to a particular regularity they may possess which is captured by the notion of
sub-automaton. Up to renaming, a sub-automaton of a ca A is a subset of the
states set which is stable under iterations of A. Formally the sub-automaton
relation, denoted by v, is defined as follows.

Definition 1. A v B if there is an injective map i from A to B such that
i ◦ A = B ◦ i, where i : AZ → BZ denotes the uniform extension of i.

When X ⊆ A is stable for A (A(XZ) ⊆ XZ), we denote by AX the restriction
of A to X (then AX v A). Besides, when |A| = |B|, A v B implies B v A and
A is isomorphic to B what is denoted by A ∼ B.

Intrinsic universality we now define relies on a formal notion of direct sim-
ulation between ca. A restricted version of this notion was first introduced by
J. Mazoyer and I. Rapaport in [4] and N. Ollinger extended it in [5].
A can simulate B (denoted by A � B) if, up to some regular spatio-temporal
transformations, A is a sub-automaton of B. Transformations considered here
are very simple: they allow grouping several cells in one block and running sev-
eral steps of a ca in one. Formally, for any finite set A and any m ∈ N (m 6= 0),
let om : AZ → (Am)Z be the map such that

∀c ∈ AZ,∀z ∈ Z :
(
om(c)

)
(z) =

(
c(mz), c(mz + 1), . . . , c(m(z + 1)− 1)

)
.



Then, denoting the ca om ◦ An ◦ (om)−1 (with states set Am) by A<m,n>,
the relation � is defined as follows:

A � B ⇔ ∃ma,mb, na, nb : A<ma,na> v B<mb,nb>.

� defines a quasi-order on the set of ca (see [5]) and naturally induces
an equivalence relation denoted by ' and an order on equivalence classes of
'. In addition to being natural for the model of ca, this simulation relation
nicely captures the examples of intrinsically universal ca already present in the
literature (see [2, 6]).

Definition 2. A is intrinsically universal if ∀B,∃m,n : B v A<m,n>.

An important fact is that the set of intrinsically universal ca is exactly the
maximal class of ' (see [5] for a detailed proof) and we will use alternatively
this characterisation and the definition above.

A property P is a set of ca. A has the property P if A ∈ P. A property P
is said to be increasing if: ∀A,∀B, A v B implies A ∈ P ⇒ B ∈ P. Similarly, P
is said to be decreasing if: ∀A,∀B, A v B implies B ∈ P ⇒ A ∈ P. Notice that
since the ∼ relation is included in v, increasing (or decreasing) properties are
closed under renaming of states—a natural requirement when studying ca. We
will specifically concentrate on monotonic properties in section 2. For now, just
notice that intrinsic universality is an increasing property.

To measure how common a property is among ca, we consider its density
using the following canonical enumeration of ca: a radius r is fixed and we let
the number of states grow. To avoid irrelevant consideration of states renaming
we consider only ca whose states are integers. Precisely, An denotes the set of
ca of radius r with states set {1, . . . , n} and the density of properties is defined
as follows.

Definition 3. The density of property P is µ(P) = lim
n→∞

|An ∩ P|
|An|

when the

limit exists.

To end this section, we give some useful notations. If a ∈ A then a de-
notes the configuration of AZ made solely of a. Similarly, if f : A→ A, f de-
notes its uniform extension to configurations of AZ, and fk its extension to Ak

(fk(a1 · · · ak) = f(a1) · · · f(ak)). If c is a configuration, L(c) denotes the set of
words appearing in c. Finally, if w is a word, Σ(w) denotes the set of letters
appearing in w.

2 A class of cellular automata inducing a zero-one law
for monotonic properties

In this section we consider a sub-class of ca (namely captive cellular automata)
which was first introduced in [7]. Captive cellular automata are ca such that
any subset of the states set is stable (i.e. induces a sub-automaton). We insist
that this class does not rely on any structural assumption on the states set and
that it is characterised a property of the local transition map.



Definition 4. A of radius r is a captive cellular automaton (cca for short) if
∀u ∈ A2r+1 we have A(u) ∈ Σ(u).

We address the problem of the density of universality among ca from that
class. Formally, if Cn denotes the set of cca on states set {1, . . . , n}, the density

of a property P among cca is µC(P) = lim
n→∞

|Cn ∩ P|
|Cn|

when the limit exists.

Quite surprisingly, the structure of cca allows to globally solve the problem
of density for any monotonic property.

Lemma 1. For any B ∈ Cn (n ≥ 2), there exists a rational λB ∈]0, 1[ such that
for all m ≥ n and X = {a1, . . . , an} ⊆ {1, . . . ,m}, we have :∣∣{A ∈ Cm : AX ∼ B

}∣∣
|Cm|

= λB.

Proof. Let m ≥ n be fixed and consider X a subset of {1, . . . ,m} of size n. The
equivalence relation ≡X such that A ≡X B ⇔ AX = BX is well-defined on Cm

since the set X always induces a sub-automaton for any cca. It is clear that
≡X has exactly |Cn| equivalence classes (independently of X), each of the same
size |Cm|

|Cn| . Besides, {A : AX ∼ B} is the union of a number b of classes of ≡X

depending only on B. Therefore,∣∣{A ∈ Cm : AX ∼ B
}∣∣

|Cm|
=

b

|Cn|

and the lemma follows. ut

Theorem 1. For any monotonic property P which is non-trivial in C, we have:

– if P is decreasing in C then µC(P) = 0;
– if P is increasing in C then µC(P) = 1.

Proof. First suppose P is non-trivial and decreasing. There must therefore be
some B ∈ Cn \ P for some n ∈ N. Now for m ∈ N let m = kn+ r be the Eu-
clidean division of m by n and for 1 ≤ i ≤ k let Xi = {(i− 1)n+ 1, . . . , in}.
Then we have:

P ∩ Cm ⊆
⋂

1≤i≤k

{A ∈ Cm : AXi
6∼ B}

because A ∈ P implies ∀i, 1 ≤ i ≤ k : AXi ∈ P. Now since the sets Xi are pair-
wise disjoint, the events ”AXi 6∼ B” are pairwise independent. Hence, expressing
the set inclusion above in terms of probabilities we get:∣∣P ∩ Cm

∣∣
|Cm|

≤
∏

1≤i≤k

∣∣{A ∈ Cm : AXi 6∼ B}
∣∣

|Cm|
= (1− λB)k,



the right-hand equality being derived from lemma 1. Finally, taking the limit
when m→∞ for both sides, we conclude: µC(P) ≤ limk→∞(1− λB)k = 0.

Now suppose P is a non-trivial increasing property. Then ¬P is a non-
trivial decreasing property. From what we have shown before µC(¬P) = 0. Thus
µC(P) = 1. ut

The first immediate implication of theorem 1 is of dynamical nature (see [8]
for a definition of expansivity).

Corollary 1. For any fixed radius, almost no cca is injective, or expansive, or
surjective.

Proof. Since the surjectivity property is obviously non-trivial for cca, it is suf-
ficient to show that it is decreasing and applying theorem 1 we get that almost
no cca is surjective. The fact that surjectivity is decreasing comes directly from
theorem 5.9 of [9] which states that A is surjective if and only if the number
of preimages of any word under A is uniformly bounded (independently of the
word).

The facts that both injectivity and expansivity implies surjectivity are clas-
sical results (see [9]), but we insist that injectivity and expansivity are also
decreasing non-trivial properties. ut

In the case of cca, the answer to the central question addressed in this paper
is now obtained as a direct corollary of theorem 1.

Corollary 2. There exists an integer r0 such that for any fixed radius r ≥ r0,
almost all cca are intrinsically universal: µC

(
{A : ∀B,B � A}

)
= 1.

Proof. The property of being intrinsically universal is obviously increasing so it is
sufficient to show that it is non-trivial and the result follows from theorem 1. The
existence of intrinsically universal cca was first pointed out in [7]. Definition 5
and lemma 2 show that there is an intrinsically universal cca of radius 7 and it
is not difficult to tune the construction to lower its radius down to 5. ut

Although almost all cca are intrinsically universal as shown above, we are
going to show that the problem of whether a given cca is intrinsically universal
or not is undecidable. This fact may seem scheming compared with the ubiquity
of universality in cca. But, overall, it has a noticeable structural consequence
on the class cca concerning the limit between universality and non-universality
as pointed out by corollary 3.

The proof is a reduction from the same decision problem with any ca as
input. It essentially relies on the transformation τ (given hereafter). We insist
that algorithmic constructions on captive cellular automata are non-classical and
involve new construction techniques because no Cartesian product can generally
be used and every state which eventually appears at a position must already
be present locally—thus a fixed radius implies a limited number of states being
potentially used at each time whatever the states set is.



We now give the construction τ . It transforms a ca A into a cca τ(A)
simulating it. As usual, the simulation occurs on a particular set of “legal”
configurations. On such configurations each cell of A is directly simulated by
some data cell of τ(A) surrounded by several control cells. The main idea is as
follows. For a data cell to change its state we must guarantee that its future
state already appears in its neighbourhood. For that purpose, signal cells placed
regularly along the line take periodically each state of A (thanks to a shift
behaviour) and thus eventually allow the transition of their neighbouring data
cell. The construction uses 3 other types of control cells: 2 are used to ensure
the global synchronism of the simulation—which is the difficult part—and 1
is used to propagate encoding errors—a feature essential for the correctness of
the reduction. The synchronism is controlled by offset cells and memory cells.
The configuration formed by successive signal cells is spatially periodic and
consist in an alternation of letters of A and offset indicators. Offset indicators are
placed in such a way that all offset cell are “aligned” with their corresponding
offset indicator at the same time. Finally, the memory cells are used to keep
the result of transitions—which occur asynchronously—until offsets cells are
“aligned” with their indicators. Each time this “alignment” occurs data cells are
updated with saved transition results and memory cells are cleaned up. For sake
of simplicity we only give the explicit construction of τ on ca with radius 1 but
it is straightforward to extend it to any radius.

Definition 5. Let A be a ca (supposed of radius 1 in the present definition). Let
O = {o0, . . . , on−1} (with n = |A|) and {κ} be sets of states disjoint with A. De-
note by WA the set of words of the form O · (A ∪O) · {κ} · (A ∪O) · (A ∪O) ·A.
Let CA be the set of configurations which are a bi-infinite concatenation of words
of WA. Finally let KS = {ajoj+1 mod n, 0 ≤ j ≤ n− 1} ∪ {ojaj , 0 ≤ j ≤ n− 1}
and KO = {ojoj+1 mod n, 0 ≤ j ≤ n− 1}. τ(A) is the cca of radius 7 and state
set Aτ = A ∪ {κ} ∪O defined as follows:

1. for any offset states o, o′, o′′ ∈ O, signal states s1, s′1, s
′′
1 , s2, s

′
2, s

′′
2 ∈ A ∪O,

memory states m,m′,m′′ ∈ A ∪O and data states d, d′, d′′ ∈ A,

u τ(A)(u)

d′′ o s1 κ s2md o′ s′1 κ s
′
2m

′ d′ o′′ s′′1

{
o′ if oo′ ∈ KO

κ otherwise,

o s1 κ s2mdo′ s′1 κ s′2m
′ d′ o′′ s′′1 κ

{
s′2 if s′1s

′
2 ∈ KS

κ otherwise,
s1 κ s2mdo′ s′1 κ s′2m

′ d′ o′′ s′′1 κ s
′′
2 κ

κ s2mdo′ s′1 κ s′2 m′ d′ o′′ s′′1 κ s
′′
2 m

′′

{
s′′1 if s′2s

′′
1 ∈ KS

κ otherwise,

s2mdo′ s′1 κ s
′
2 m′ d′ o′′ s′′1 κ s

′′
2 m

′′ d′′

{
s′1 if s′1 ∈ {A(dd′d′′), o′},
m′ otherwise,

mdo′ s′1 κ s
′
2m

′ d′ o′′ s′′1 κ s
′′
2 m

′′ d′′ o

{
m′ if s′1 = o′

d′ otherwise,



2. for any u ∈ A15
τ \ L(CA), τ(A)(u) =

{
u8 if κ 6∈ Σ(u),
κ if κ ∈ Σ(u)

The 6 cases in the first part of the definition above are mutually exclusive
because of a different position of state κ in u. Actually, in a configuration of
CA, the type of a cell and the way it behaves is determined by its distance to
the closest κ on its left, precisely: 3 for data cells, 2 for memory cells, 1 and 5
for signal cells and 4 for offset cells. Besides notice that for any configuration
c ∈ CA, τ(A) checks whether

– the configuration formed by the successive offset cells in c, the offset config-
uration of c, is periodic of period o0 . . . on−1;

– the configuration formed by the successive signal cells in c, the signal con-
figuration of c, is periodic of period o0a0o1a1 . . . on−1an−1.

Such configurations are characterised by the set of words of length 2 they contain
(KO and KS respectively) and thus the checks can be done locally (line 1, 2 and
4 of the first point of definition 5). In the following, we will denote by ΓA the set
of configurations from CA whose offset configuration and signal configuration
are periodic with the respective periods given above. Informally, ΓA is the set
of “legal” configurations and it is straightforward to verify that ΓA is stable
under τ(A). The following lemma shows that τ(A) can simulate A on such
configurations.

Lemma 2. For any ca A, A � τ(A).

Proof. We show that A<n,1> v τ(A)<6n,2n> where n = |A|. Adopting the nota-
tions of definition 5, denote by ψ the following map from A× {0, . . . , n− 1} to
A6

τ :
(α, j) 7→ ojajκoj+1 mod noja.

Then we define an injection Υ from An to A6n
τ as follows:

Υ (α0, . . . , αn−1) = ψ(α0, 0) . . . ψ(αj , j) . . . ψ(αn−1, n− 1).

Now consider the set E of configurations of the form Υ (An)Z. E is precisely
the set of “legal” configurations (E ⊆ ΓA) which have just been “synchronised”
(copy of memory cells to data cells and cleaning of memory cells). It is easy
to verify that for c ∈ E we have τ(A)<6n,2n>(c) ∈ E (the spatial period of the
signal configuration of c has length 2n). Finally, τ(A) simulate 1 iteration of A
every 2n iterations through the encoding Υ , precisely:

(An)Z Υ−−−−→ EyA<n,1>

yτ(A)<6n,2n>

(An)Z Υ−−−−→ E

To see this, first notice that starting from c ∈ E data cells remain in the same
state during 2n− 1 steps until they take the state of their neighbouring memory



cell at step 2n. Second, memory cells are initially in a state from O and they
wait for a particular state of A to be displayed by their corresponding signal
cell. It is precisely the state obtained when applying a transition of A to the 3
local data cells. This state must eventually appear within 2n− 1 steps in each
signal cell (thanks to the particular form of the signal configuration) so that
after 2n− 1 steps, each memory cell contains the result of the transition of A.
After 2n steps the configuration is finally synchronised by the copy of memory
cells to data cells and the cleaning of memory cells. ut

Lemma 3. For any ca A and any surjective ca B, if B v τ(A)<m,m′> for
some m,m′ ∈ N then either B is the identity map, or B � A.

Proof. Let φ : B → Am
τ be the injection involved in the relation B v τ(A)<m,m′>

and let Lφ be the semi-group generated by the set of words {φ(b), b ∈ B}. Com-
paring Lφ to the language L(ΓA), two cases are to be considered:

– if Lφ 6⊆ L(ΓA) then either κ does not appear in Lφ and then B = id (since
τ(A) does nothing on configuration without κ), or there is some b0 ∈ B
such that κ appears in φ(b0). In the latter case let w ∈ Lφ \ L(ΓA) be a
concatenations of words from φ(B) and consider the periodic configuration
c0 of period φ(b0)w. c0 can be chosen different from κ (otherwise it im-
plies that φ(b) = κm ∀b ∈ B, hence B has only 1 state and then clearly
B � A). Let p = |φ(b0)w|. Then κp 6∈ L(c0). Besides, since B is surjective
and c0 ∈ (φ(B))Z, the simulation of B by τ(A) implies that there exists some
c−1 ∈ φ(B)Z such that τ(A)m′

(c−1) = c0. Then, if p− 1 ≥ 2, κp−1 6∈ L(c−1)
(otherwise κp ∈ L(c0)) and we can continue the same reasoning so that there
must be some c ∈ φ(B)Z such that κ2 6∈ L(c) and τ(A)t(c) = c0 for some t.
Clearly κ ∈ L(c) since κ ∈ L(c0) and τ(A) is a cca. Finally, by surjectivity
of B, there is c′ such that τ(A)(c′) = c. Again we have κ ∈ L(c′) and thus
c′ ∈ ΓA because a configurations not in ΓA containing a κ necessarily leads
to a configuration containing κ2. Since ΓA is stable under τ(A), we must
have c0 ∈ ΓA : contradiction with the initial choice of c0.

– now suppose Lφ ⊆ L(ΓA). If c ∈ ΓA and c′ are such that τ(A)t(c′) = c for
some t then c′ ∈ ΓA because any d ∈ τ(A)

(
AZ

τ \ ΓA
)

is such that κ2 ∈ L(d).
Moreover the orbit of c′ enters E (defined in proof of lemma 2) every 2n
steps, so when t ≥ 2n we can consider

χ(c) = max
t′≤t

{τ(A)t′(c′) : τ(A)t′(c′) ∈ E}.

Notice that the definition is independent of t and c′ (because from χ(c) to c,
τ(A) does not alter the state of data cells and since χ(c) ∈ E it is entirely
determined by its data cells). Since B is surjective, any configuration of
φ(B)Z can be reached in arbitrarily many steps so χ is well-defined on φ(B)Z.
Notice also that χ is a local mapping (each bloc of 6 states of c is mapped to
a single bloc of 6 states in χ(c)) and that it is injective (by determinism of
τ(A)). Moreover, on φ(B)Z, χ commutes with τ(A)2n. Finally, notice that



the mapping Υ is one-to-one from (An)Z to E. Then, from lemma 2 and
properties of χ, we have the following commutative diagram :

(B6n)Z φ6n

−−−−→ (A6mn
τ )Z χmn

−−−−→ (Υ (An)m)Z (Υ m)−1

−−−−−→ (Amn)ZyB<6n,2n>

yτ(A)<6nm,2nm′>

yτ(A)<6nm,2nm′>

yA<nm,m′>

(B6n)Z φ6n

−−−−→ (A6mn
τ )Z χmn

−−−−→ (Υ (An)m)Z (Υ m)−1

−−−−−→ (Amn)Z

(here χ denotes the local map from A6
τ to A6

τ mentioned above). This shows
B<6n,2n> v A<nm,m′> by the injection (Υm)−1 ◦ χmn ◦ φ6n. Hence B � A
by definition. ut

Theorem 2. There exists r0 such that for any fixed radius r ≥ r0, it is un-
decidable to know whether a cca of radius r is intrinsically universal or not.

Proof. Let X be the following ca over {0, 1}: X (a, b, c) = b+ c mod 2. ∀m,n,
X<m,n> is always surjective but neither the identity map so we deduce from
lemma 2 and lemma 3 that ∀A: X � A ⇔ X � τ(A).

N. Ollinger established in [1] the undecidability of intrinsic universality1

by giving a recursive construction Uq such that for any ca A of radius 1:

– Uq(A) has radius rU (where rU only depends on Uq, not on A),
– if A is q-nilpotent over periodic configurations then X 6� Uq(A),
– and if A is not q-nilpotent over periodic configurations then Uq(A) is intrin-

sically universal.

A ca is q-nilpotent over periodic configurations if every periodic configuration
leads to the same configuration q in finite time. The problem of nilpotency
over periodic configurations for ca of radius 1 was proven undecidable in [10].
From the previous observation, the recursive construction τ ◦ Uq has the same
properties as Uq and maps to cca of fixed radius r0 = 7rU . ut

The following corollary shows that, as in the general case, there is no limit
on how complex a cca of fixed radius can be without being intrinsically uni-
versal. Hence non-universal cca cannot be reduced to a negligible set of simple
exceptions among an overwhelming majority of universal objects.

Corollary 3. There exits r0 such that for any r ≥ r0 and for any non-universal
cca A of radius r, there is a non-universal cca B of radius r such that A � B
but B 6� A.

Proof. Let r ≥ r0 be a fixed radius for all following ca, where r0 is the constant
of theorem 2. First we show that there is no cca A which is non-universal
and such that for all non-universal cca B, B � A. As already pointed out in
1 In [1], the undecidability result is not formulated for a fixed radius, but it is easy to

check that the result remains true.



the general case by N. Ollinger in [5], this follows from the semi-decidability
of intrinsic universality: with a maximal cca for non-universal cca we could
semi-decide non-universality and combining the two semi-decision procedures
we could finally decide intrinsic universality which contradicts theorem 2.

Now let us show that for any pair A, B of non-universal cca, there is a non-
universal cca C such that A � C and B � C. This fact complete the proof since it
implies that there cannot be more than one non-universal cca which is maximal
for non-universal cca. C can be chosen as follows. Let � be a total ordering on
A ∪B such that ∀a ∈ A and ∀b ∈ B: b� a (up to renaming of states, we can
suppose A ∩B = ∅). Then for any u ∈ (A ∪B)2r+1, C is defined by:

C(u) =


A(u) if u ∈ A2r+1,

B(u) if u ∈ B2r+1,

maxΣ(u) otherwise,

where max is relative to the order �. Clearly C is a cca and A � C and B � C.
Moreover if C is universal, then A or B must also be universal. To see this
consider a universal ca U such that for any pair a, b of states the periodic
configuration of period ab is a fixed point (to be convinced of the existence of
U notice that any behaviour can be specified on “non-coding” configurations in
the construction of a universal ca). Hence, if C is universal then U v C<m,n>

for some m,n ∈ N. And, denoting by φ the injection involved in this relation,
we must have φ(U) ⊆ Am or φ(U) ⊆ Bm because, otherwise, there would exists
u1 and u2 in U such that the word φ(u1)φ(u2) contains both a state from A
and a state from B. From the definition of C, the periodic configuration of
period φ(u1)φ(u2) cannot be a fixed point (because any state of B ultimately
disappears) which contradicts the property of U . Therefore we must have either
U v A<m,n> or U v B<m,n>. ut

3 What about the general case?

There is no zero-one law for monotonic properties on ca in general. Indeed, let
P be the property of possessing at least one quiescent state (q ∈ A is quiescent
for A if A(q) = q). Then P is an increasing property but 0 < µ(P) < 1. To be
precise, it is not difficult to show that

µ(¬P) = lim
n→∞

(
1− 1

n

)n

=
1
e
.

Actually, there are also increasing properties with density 0. This is what
we are going to show with the property Pv of possessing a non trivial sub-
automaton: Pv = {A : ∃B, 1 < |B| < |A| andB v A}.

Before giving the proof, notice that this shows at least that arguments similar
to those of theorem 1 cannot be used in the general case. The following lemma
establish a useful upper bound.



Lemma 4. ∃n0∀n ≥ n0∀k, 2 ≤ k ≤ n− 1 :
(

k
n

)k2r+1

≤ n−2k.

Proof. Taking the log of the expression, it is sufficient to show that the following
relation eventually holds uniformly for k: k2r

2 log n
k ≥ log n. This majoration is

obtained by a standard analysis of the real function

f(k, n) : k, n 7→ k2r

2
log

n

k

as follows. First, f(2, n) ≥ log n and f(n− 1, n) ≥ log n are eventually true. Then
∂f
∂k (k, n) = rk2r−1 log n

k −
k2r−1

2 so it equals zero for k = e−
1
2r n. Finally, for any

0 < α < 1, f(αn, n) is eventually greater than log n since it is a monomial in n
with a positive coefficient. ut

Proposition 1. For any fixed radius, almost no ca possesses a non-trivial sub-
automaton: µ(Pv) = 0.

Proof. For 2 ≤ k ≤ n− 1, the probability thatA ∈ An has a sub-automaton with

k states is bounded by Ck
n

(
k
n

)k2r+1

: for a fixed choice of k states, each transition
involving only these k states must lead to one of them. Hence we have:

µ(Pv) ≤ lim
n→∞

n−1∑
k=2

Ck
n

(
k

n

)k2r+1

. (1)

Using majoration of lemma 4 in the inequality, we obtain:

µ(Pv) ≤ lim
n→∞

n−1∑
k=2

Ck
n

(
1
n2

)k

≤ lim
n→∞

 n∑
k=0

Ck
n

(
1
n2

)k

−
∑

k∈{0,1,n}

Ck
n

(
1
n2

)k


≤ lim
n→∞

((
1 +

1
n2

)n

− 1− 1
n
− 1
n2n

)
.

Thus µ(Pv) = 0. ut

4 Perspectives and open problems

We have shown that intrinsic universality is ubiquitous in cca. Actually, the
result extends to any reasonable notion of universality including Turing uni-
versality. We insist however that the set of intrinsically universal cca is rich
because non recursive. Moreover, lemma 3 shows that it is possible given any ca
to construct a cca that is somehow similar with respect to �. Can this lemma
be extended and more precisely can we characterise '-classes containing a cca?
Or at least give a large collection of '-classes containing a cca?



Besides, although the density result for cca gives a lower bound on the
growing rate of intrinsically universal ca, the density problem for ca remains
open since cca constitute a negligible subset of cellular automata (see proposi-
tion 1). However, if this density turned out to be non-zero, it would mean that
a significant part of ca acquire any sub-structure by simple spatio-temporal
transformation while they are locally totally unstructured (proposition 1). To
that extent, a study of the way a ca can or cannot acquire structure by spatio-
temporal transformations reveals to be essential to decide the density problem.
In [11] it is shown that some ca avoid some sub-automaton size even up to
spatio-temporal transformations. Can we extend this kind of result and show
that there exists some ca which has no non-trivial sub-automaton at any scale?
Or conversely is there for any ca some unavoidable transformation giving him
some non-trivial structure even if it is totally unstructured locally?
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