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Central issue in cellular automata (CA) theory:

local definition
?−→ global dynamics

? ≡ undecidability is everywhere

⇒ adding local structure

Example of additive CA (Martin et al., 1984)

• dynamics/global properties well understood but...

• ...far from being representative (e.g. no universality)

⇒ a new attempt : Captive Cellular Automata (CCA)
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3 Captive Cellular Automata

A cellular automaton A is a 4-uple (Zd, N, S, δ):

Zd lattice of cells

N = {−→n1, . . . ,
−→nk} vectors of Zd, neighbourhood of A

S a finite set of states

δ : Sk → S local transition map

• Configurations are mappings from Zd to S.

• A global mapping on configurations is obtained by

uniform and synchronous application of δ:

∀c ∈ SZd
, ∀−→z ∈ Zd : A(c)−→z = δ(c−→z +−→n1

, . . . , c−→z +−→nk
)
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Space-time diagram

A =
(
Z, N = {−1, O, 1}, S =

{
, , ,

}
, δ

)
...

· · · · · ·

(time goes from bottom to top)
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A notion of stable sub-system:

B is a sub-automaton of A (B v A) if

BZd ι−−−→
(
ι(B)

)ZdyB yA
BZd ι−−−→

(
ι(B)

)Zd

for some injective map ι : B → A

“Up to renaming, B is A restricted to a subset of states.”
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A is a captive cellular automaton (CCA) if every subset of

the states set is stable under A:

∀B ⊆ A,AB v A

Remarks :

• a property of the local transition map

• a CA with 2 states is captive if and only if its 2 states

are quiescents

• a CCA with a neighbourhood of size n is entirely

determined by its n-states sub-automata
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The class of CCA is closed under

• sub-automata

• composition

• iteration

• but not under cartesian product

e.g. σ × σ−1 is not captive

(however A× B captive ⇒ A and B captive)

classical algorithmic constructions to be revisited

(e.g. simulating larger radius with more states)



Properties — (2)

8 Captive Cellular Automata

Proposition: if A is captive and reversible then A−1 is

captive.



Properties — (2)

8 Captive Cellular Automata

Proposition: if A is captive and reversible then A−1 is

captive.

⇒ reversible CCA are “set conserving” (the converse is false)

(“set conserving” = conservation of the set of states present in

the initial configuration)



Properties — (2)

8 Captive Cellular Automata

Proposition: if A is captive and reversible then A−1 is

captive.

⇒ reversible CCA are “set conserving” (the converse is false)

(“set conserving” = conservation of the set of states present in

the initial configuration)

Remark: set conserving ⇒ captive (the converse is false).
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Other properties of CCA for d = 1...

Proposition : any additive CCA with more than 2 states is

trivial (i.e. a shift map)

A additive = A is a morphism w.r.t. some group law on A

Proposition : there is no CCA permutive at 2 positions with

more than 2 states

A permutive at position i =

∀x−r, . . . , xr: x 7→ δA(x−r, . . . , xi−1, x, xi+1, . . . , xr) is 1-to-1

Proposition : there is exactly 1 expansive CCA with radius 1

A(c)i = ci−1 + ci + ci+1 mod 2 on states set {0, 1}
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10 Captive Cellular Automata

A natural question...

“Where” are CCA among CA?

Notion of simulation (Rapaport-Mazoyer 98, Ollinger 02):

• the v relation...

• ...up to rescaling transformations (A → A
−→
T )

states: A states: Am

A
−→
T =<m,n>−−−−−−→ A

−→
T

A<m,n> = om ◦ An ◦ o−m
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Simulation = quasi-order �

A � B ⇔ ∃
−→
T ,
−→
T ′ : A

−→
T v B

−→
T ′

• � induces an equivalence relation ∼

• � admits a maximum class U

A intrinsically universal = ∀B
−→
T : B v A

−→
T .

Proposition: U = intrinsically universal CA

intrinsic univ. ⇒ Turing univ. (the converse is false)

Where are CCA in the ordered structure
(
CA/ ∼,�

)
?
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∀

∃
class U

= CCA

(Zp,⊕) with p > 2
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A uniform transformation:

CA CCA

A A#

A = {a1, . . . , an} A ∪ {#}

rA O(|A|.rA)

AZ κ−→
(
A ∪ {#}

)Z

c = · · · c−1c0c1 · · ·
↓

κ(c) = · · ·#a1 . . . an#c−1#a1 . . . an#c0#a1 . . . an#c1#a1 . . . an# · · ·

• A# simulates A on κ
(
AZ)

• A# = identity elsewhere
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About the structure of
(
CCA/ ∼,�

)
...

• it contains an infinite number of equivalence classes

• it admits any finite tree as a sub-order

Proposition: ∃ a familly (χm,n)n≥m of CCA s.t.

6�
6� χm,n

≺

�

6�
6�
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Theorem (Čulik et al. 89, Kari 92) the nilpotency

problem is undecidable in any dimension

Theorem (Kari 94) in any dimension, the nilpotency

problem can be reduced to any non-trivial property on

limit sets

A CCA cannot be nilpotent : what about the latter theorem

when restricted to CCA?

“An odd number of states appear in the limit set” is a

non-trivial property (for CCA) which is decidable (for CCA).
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16 Captive Cellular Automata

No more “Rice theorem” for properties of limit sets, but...

Proposition: ∃ injection Φ which maps undecidable limit

properties for CA into undecidable limit properties for CCA.

The proof rely on the ability for CCA to uniformly simulate

CA.
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17 Captive Cellular Automata

Let A be a fixed CA

Problem P1

input a CA B with rB = rA

output ΩA = ΩB ?

Problem P2

input a CCA B with rB = rA

output ΩA = ΩB ?

P1 is undecidable whereas P2 is decidable.
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To be continued...

• Revisiting classical undecidability results for CCA

(proofs use nilpotency and/or cartesian product)

– surjectivity, reversibility (for d ≥ 2)

– reaching the limit set in finite time

– more on limit set properties

• complexity hierarchy according to neighbourhood for

CCA?

• what are ∼-classes of CA avoided by CCA?


