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- Introduction — (1)

Central issue in cellular automata (CA) theory:

local definition £ global dynamics

7 = undecidability is everywhere

= adding local structure

Example of additive CA (Martin et al., 1984)
e dynamics/global properties well understood but...

e ...far from being representative (e.g. no universality)

= a new attempt : Captive Cellular Automata (CCA)

2 Captive Cellular Automata



- Definitions — (1)

A cellular automaton A is a 4-uple (Z%, N, S, ):

7% lattice of cells
N = {ni,...,n;} vectors of Z¢, neighbourhood of A
S a finite set of states

§:SF - S local transition map
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- Definitions — (1)

A cellular automaton A is a 4-uple (Z%, N, S, ):

7% lattice of cells
N = {ni,...,n;} vectors of Z¢, neighbourhood of A
S a finite set of states

§:S* — S local transition map
e Configurations are mappings from Z% to S.

e A global mapping on configurations is obtained by
uniform and synchronous application of §:

Ve € S V7 €Z%: A(e)w = 6(coris, ... Corn)
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- Definitions — (2)

Space-time diagram

A= (Z,N={-1,0,1},S={HHEA R} )

(time goes from bottom to top)
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- Definitions — (3)

A notion of stable sub-system:

B is a sub-automaton of A (BC A) if

B% T, ((B)Y

|2 |4

B% T, ((B)Y

for some injective map +: B — A

“Up to renaming, B is A restricted to a subset of states.”
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- Definitions — (4)

A is a captive cellular automaton (CCA) if every subset of
the states set is stable under A:

VBC A AL A
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- Definitions — (4)

A is a captive cellular automaton (CCA) if every subset of
the states set is stable under A:

VBC A AgC A

Remarks :
e a property of the local transition map

e a CA with 2 states is captive if and only if its 2 states
are quiescents

e a CCA with a neighbourhood of size n is entirely
determined by its n-states sub-automata
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- Properties — (1)

The class of CCA is closed under
e Sub-automata
e Ccomposition
e iteration

e but not under cartesian product
e.g. o x o~ ! is not captive

(however A x B captive = A and B captive)

classical algorithmic constructions to be revisited
(e.g. simulating larger radius with more states)
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- Properties — (2)

Proposition: if A is captive and reversible then A1 is
captive.
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- Properties — (2)

Proposition: if A is captive and reversible then A1 is
captive.

= reversible CCA are ‘“set conserving’' (the converse is false)

(“set conserving" = conservation of the set of states present in
the initial configuration)

Remark: set conserving = captiVe (the converse is false).
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Other properties of CCA ford=1...
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- Properties — (3)

Other properties of CCA ford=1...

Proposition : any additive CCA with more than 2 states is
trivial (i.e. a shift map)

A additive = A is a morphism w.r.t. some group law on A

Proposition : there is no CCA permutive at 2 positions with
more than 2 states

A permutive at position 1 =

Ve_p,.o,@p: = 04(T—py. .., Ti—1, T, Tig1,.-.,2Tr) IS 1-10O-1

Proposition : there is exactly 1 expansive CCA with radius 1

A(c);i = ¢i—1 4+ ¢ + ¢i+1 mod 2 on states set {0,1}

B B o
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- Simulations & universality — (1)

A natural question...
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A natural question...

“Where" are CCA among CA?

Notion of simulation (Rapaport-Mazoyer 98, Ollinger 02):
e the L relation...

e ...up to rescaling transformations (A — A?)
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A natural question...

Simulations & universality — (1)

“Where" are CCA among CA?

Notion of simulation (Rapaport-Mazoyer 98, Ollinger 02):

e the L relation...

e ...up to rescaling transformations (4 — A")

states: A

states: A™

? < > ol
=<m,n
A N

AT

A<m,n> — o™ o An oo ™

B B 0
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- Simulations & universality — (2)

Simulation = quasi-order <

A<B<3T. T : AT C BT
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- Simulations & universality — (2)

Simulation = quasi-order <

A<B3T T : AT C BT

o
| A

induces an equivalence relation ~

e < admits a maximum class U

A intrinsically universal = VBT : B C Af
Proposition: U = intrinsically universal CA

intrinsic univ. = Turing univ. (the converse is false)

Where are CCA in the ordered structure (CA/ ~,<)7
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- Simulations & universality — (3)

o
A \
\
\

: class U
i
\v/.
? e = (CCA
2
(Zp, ®) with p > 2
. . 12 . . Captive Cellular Automata
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3L Simulations & universality — (4)

A uniform transformation:

CA CCA
A Ay
A={ai,...,an} AU {#}
T A O(|Al|.r4)

A2 5 (Au{#))”

C — -+ C_1CpC1 * * -
!
H}(C) o ..-#a1...an#c_l#al...an#co#a1...an#cl#a1,,,an#...
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3L Simulations & universality — (4)

A uniform transformation:

CA CCA
A A

A={a,...,an} AU {#)
T A O(|A|.r4)

AZ 5 (Au{#))”

C p— -ooc_lcoclco-

’f(c) = A1 ... QuHFC1FFAL .. A FCOFFAL .. A FCIFFAL .. A FF - -

e Ay simulates A on x(A%)
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3L Simulations & universality — (4)

A uniform transformation:

CA CCA
A A

A={a,...,an} AU {#)
T A O(|A|.r4)

AL 5 (Au{#n”
C p— -+ C_1CpC1 * *
’f(c) = A1 ... QuHFC1FFAL .. A FCOFFAL .. A FCIFFAL .. A FF - -

e Ay simulates A on x(A%)

e A, = identity elsewhere
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- Simulations & universality — (5)

About the structure of (CCA/ ~,=<)...
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- Simulations & universality — (5)

About the structure of (CCA/ ~,=<)...
e it contains an infinite number of equivalence classes
e it admits any finite tree as a sub-order

Proposition: 3 a familly (xm.n)n>m Of CCA s.t.

ya —
% Xm.n

2

7

<

L7
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- Decidability — (1)

Theorem (Culik et al. 89, Kari 92) the nilpotency
problem is undecidable in any dimension

Theorem (Kari 94) in any dimension, the nilpotency
problem can be reduced to any non-trivial property on
limit sets

A CCA cannot be nilpotent : what about the latter theorem
when restricted to CCA?

“An odd number of states appear in the limit set” is a
non-trivial property (for CCA) which is decidable (for CCA).
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- Decidability — (2)

No more “Rice theorem” for properties of limit sets, but...

Proposition: 3 injection & which maps undecidable limit
properties for CA into undecidable limit properties for CCA.

16 Captive Cellular Automata



- Decidability — (2)

No more “Rice theorem” for properties of limit sets, but...

Proposition: 3 injection & which maps undecidable limit
properties for CA into undecidable limit properties for CCA.

The proof rely on the ability for CCA to uniformly simulate
CA.

Captive Cellular Automata
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- Decidability — (3)

Let A be a fixed CA
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- Decidability — (3)

Let A be a fixed CA

Problem P1

input a CA B with rg =14
output Q4 =05 7

Problem P2

input a CCA B with rg =1y

output Q4 =05 7

P1 is undecidable whereas P2 is decidable.
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To be continued...
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To be continued...
e Revisiting classical undecidability results for CCA
(proofs use nilpotency and/or cartesian product)
— surjectivity, reversibility (for d > 2)
— reaching the limit set in finite time
— more on limit set properties

e complexity hierarchy according to neighbourhood for
CCA?~?

e what are ~-classes of CA avoided by CCA?~
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