ERRATUM TO THE PAPER: Communication Complexity and Intrinsic Universality in Cellular Automata*

E. Goles^a, P.-E. Meunier^c, I. Rapaport^b, G. Theyssier^{c,*}

^a Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
^bDIM, CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
^cLAMA, Université de Savoie, CNRS, 73 376 Le Bourget-du-Lac Cedex, France

Abstract

Proofs of Propositions 6 and 8 of the paper Communication Complexity and Intrinsic Universality in Cellular Automata are formally incorrect. This erratum proves weaker versions of Propositions 6 and 8 and a stronger version of Proposition 9 which are sufficient to get the main results of the paper (Corollary 2) for PREDICTION and INVASION problems. For problem CYCLE, we only prove a weaker version of Corollary 2, essentially replacing a condition of the form $f \in \Omega(n)$ by $f \notin o(n)$. All other statements of the paper are unaffected.

1. Comparison relation

In subsection 4.1 of the paper, a relation \prec between functions from $\mathbb N$ to $\mathbb N$ is defined. It should be replaced by the following:

Definition 1. $\phi_1 \prec \phi_2$ if there are non-constant affine functions $\alpha, \beta, \gamma, \delta$ from \mathbb{N} to \mathbb{N} such that $\alpha \circ \phi_1 \circ \beta \leq \gamma \circ \phi_2 \circ \delta$.

By non-constant affine function, we mean a function of the form $n \mapsto \alpha n + \beta$ for some $\alpha > 0$. From now until the end of this erratum, the notation \prec refers to the above definition.

Remark. If a function ϕ is \prec -greater than the identity $n \mapsto n$ then $\phi \notin o(n)$. However, it is not generally true that $\phi \in \Omega(n)$.

Lemma 1. Let f be the identity function (f(n) = n). Let F be any CA and let $g = CC(PRED_F)$ and let $h = CC(INV_F^u)$ for some word u. Then we have:

- if $f \prec q$ then $q \in \Omega(n)$;
- if $f \prec h$ then $h \in \Omega(n)$;

 $^{{\}rm ^*Corresponding\ author\ (guillaume.theyssier@univ-savoie.fr)}$

^{*}Partially supported by programs Fondap and Basal-CMM, Fondecyt 1070022 (E.G) and Fondecyt 1090156 (I.R.).

Proof. From the definition of \prec , if a function ϕ verifies $f \prec \phi$ then:

$$\exists n_0, \alpha > 0, \beta > 0$$
 such that $\forall n \geq n_0, f(\alpha n) \geq \beta n$.

Now we claim that g has the following property:

$$\exists k_0, \forall k \geq k_0, \exists C_k \text{ such that } \forall n \geq k, g(n) \leq C_k g(n-k).$$

This property is sufficient to prove that $g \in \Omega(n)$. This property is true for $k_0 = 2r + 1$ since, if w is a word of size n and $k \ge k_0$, $\mathsf{PRED}_F(w)$ can be computed from the list of $\mathsf{PRED}_F(w_i)$ (with $0 \le i \le k$) where w_i is the subword of w of length n - k starting at position i.

To finish the proof it is sufficient to notice that h is an increasing function: indeed, the problem InV_F^u restricted to inputs of size n is a sub-problem of InV_F^u restricted to inputs of size n+1 if we add the letter number $n+1 \mod |u|$ of u at the end of each input of size n.

2. Proposition 6 and 7

Proposition 6 and 7 are true using the new definition of \prec and are proved without changing anything in the original proofs.

3. Proposition 8

Proposition 8 is true if we restrict the simulation relation \leq to a weaker relation where composition with shifts are not allowed. Precisely, denote by $F \leq_w G$ if there are parameters m, m', t, t' such that $F^{< m, t, 0>} \sqsubseteq G^{< m', t', 0>}$. If we replace $F' \leq G'$ by $F' \leq_w G'$ in the statement of Prop. 8, then it becomes correct with exactly the same proof.

4. Proposition 9

Let F be the CA used to prove item 3 of Proposition 9. In fact, F has the following stronger property:

$$\forall t, \forall z, \forall k \ge 1, \text{CC}\left(\text{Cycle}_{F^{<1,t,z>}}^k\right) \in \Omega(n)$$

Informally, not only F is hard for the cycle problem but any finite composition of F and shifts. To show this it is sufficient to consider inputs suggested by the proof with the additional restriction that $x_1 = 1$, $x_2 = 0$ and $y_1 = 0$ and $y_2 = 1$. The problem DISJ can still be encoded into such inputs and the presence of at least one '1' is granted in both F_1 and F_2 layer. Therefore, whatever the composition of F and shifts we take, we will get a $\Omega(n)$ rotation on at least one of the two components in case of disjoint inputs $(\bigwedge_{i=1}^n \neg(x_i \land y_i) = 1)$.

5. Corollary 2

Item 3 of Corollary 2 is false. We can have a universal CA for which the CYCLE problem is trivial as soon as the input period is odd: just add a layer that checks that two states (say black and white) are alternating everywhere and produces a spreading state as soon as two consecutive black cells or two consecutive white cells are in the neighbourhood.

Item 3 should be replaced by the following:

there exists
$$k$$
 s.t. $CC\left(CYCLE_F^k\right) \not\in o(n)$.

With all previous modifications, Corollary 2 can be proved as follows.

Proof. Items 1 and 2 follow directly from Lemma 1 of this erratum and Propositions 6, 7 and 9.

For item 3, denote by G the CA having property of item 3 of Proposition 9. By definition of \leq , since $G \leq F$ (F is universal), we have

$$G^{\langle m,t,z\rangle} \sqsubseteq F^{\langle m',t',0\rangle}$$

for some parameters m, m', t, t', z (informally, it is always sufficient to use shifts only in the simulated CA). Therefore, we have $G^{<1,t,z>} \preccurlyeq_w F$. By Proposition 9 (item 3 modified as above) and Proposition 8, we deduce that there is k such that $\operatorname{CC}\left(\operatorname{Cycle}_F^k\right)$ is \prec -above some $\Omega(n)$ function. We finally deduce that: $\operatorname{CC}\left(\operatorname{Cycle}_F^k\right) \not\in o(n)$.

Acknowledgment

We would like to thank Raimundo Briceño Dominguez for pointing us the problems in the original proofs and suggesting some corrections.