FO logic on CA orbits equals MSO logic

G. Theyssier

Mathematics Institute of Marseille (CNRS, Aix-Marseille University, France)

51st ICALP, Tallinn, July 2024

• G = (V, E) digraph, edges labeled by Δ (finite)

- G = (V, E) digraph, edges labeled by Δ (finite)
- Q : finite set of states
- Q^V : configurations

CA are maps $Q^V \rightarrow Q^V$ coming from a local rule

- G = (V, E) digraph, edges labeled by Δ (finite)
- Q : finite set of states
- Q^V : configurations

CA are maps $Q^V \rightarrow Q^V$ coming from a local rule

- \mathcal{LV} : finite set of possible **local views** (*def. on next slide*)
- $L_{v,c} \in \mathcal{LV}$: local view at v in configuration c
- $f : \mathcal{LV} \to Q$: local CA rule

- G = (V, E) digraph, edges labeled by Δ (finite)
- Q : finite set of states
- Q^V : configurations

CA are maps $Q^V \rightarrow Q^V$ coming from a local rule

- \mathcal{LV} : finite set of possible **local views** (*def. on next slide*)
- $L_{v,c} \in \mathcal{LV}$: local view at v in configuration c
- $f : \mathcal{LV} \to Q$: local CA rule

CA global map $F: Q^V \to Q^V$

$$F(c)_{v}=f(L_{v,c})$$

- Δ = labels on edges
- *k* : lookup distance (locality)

• $\mathcal{LV} = \Delta^{\leq k} \to 2^Q$: set of possible **local views**

$$L_{v,c} = w \mapsto \{c_{v'} : v \xrightarrow{w} v'\}$$

- Δ = labels on edges
- *k* : lookup distance (locality)

• $\mathcal{LV} = \Delta^{\leq k} \to 2^Q$: set of possible **local views**

$$L_{v,c} = w \mapsto \{c_{v'} : v \xrightarrow{w} v'\}$$

- $\Delta =$ labels on edges
- *k* : lookup distance (locality)

• $\mathcal{LV} = \Delta^{\leq k} \to 2^Q$: set of possible **local views**

$$L_{\nu,c} = w \mapsto \{c_{\nu'} : \nu \xrightarrow{w} \nu'\}$$

G + local rule $f : \mathcal{LV} \to Q \iff$ global map $F_{G,f} : Q^V \to Q^V$

• $G = Cayley(\mathbb{Z}, \Delta)$ with $\Delta = \{-1, +1\}$

• $Q = \{0, 1\}$ • k = 1• $\mathcal{LV} = (\mathcal{L}(-1), \mathcal{L}(\epsilon), \mathcal{L}(1)) \sim Q^3$ • $\mathcal{L}_{v,c} \sim (c_{v-1}, c_v, c_{v+1})$

$$f(a,b,c) = a + b \mod 2$$

• $G = Cayley(\mathbb{Z}, \Delta)$ with $\Delta = \{-1, +1\}$

> our def. is equivalent to the classical one on Cayley graphs

- $FO(=, \rightarrow)$
- variables \equiv configurations
- $x \to y$ means "F(x) = y"
- model checking of ϕ on G (f given as input):

$$F_{G,f} \models \phi$$
 ?

- $FO(=, \rightarrow)$
- variables \equiv configurations
- $x \to y$ means "F(x) = y"
- model checking of ϕ on G (f given as input):

$$F_{G,f} \models \phi$$
 ?

Fixed-point: $\exists x, x \rightarrow x$

- equivalent to the domino problem on Cayley graphs
- decidable on Z [Folklore]
- undecidable on \mathbb{Z}^2 [Berger, 1966]

- $FO(=, \rightarrow)$
- variables \equiv configurations
- $x \to y$ means "F(x) = y"
- model checking of ϕ on G (f given as input):

$$F_{G,f} \models \phi$$
 ?

Fixed-point: $\exists x, x \rightarrow x$

- equivalent to the domino problem on Cayley graphs
- decidable on Z [Folklore]
- undecidable on \mathbb{Z}^2 [Berger, 1966]

Conjecture [Ballier-Stein, 2013]

On Cayley graphs of f.g. groups: domino problem decidable **IFF** MSO model checking decidable

Injectivity/surjectivity

• injectivity: $\forall x, \forall y, \forall z, (x \rightarrow z \land y \rightarrow z) \Rightarrow x = y$

• surjectivity:
$$\forall x, \exists y, y \rightarrow x$$

• decidable on $\mathbb Z$ [Amoroso-Patt, 1972], **undecidable** on $\mathbb Z^2$ [Kari, 1992]

Injectivity/surjectivity

- injectivity: $\forall x, \forall y, \forall z, (x \rightarrow z \land y \rightarrow z) \Rightarrow x = y$
- surjectivity: $\forall x, \exists y, y \rightarrow x$
- decidable on $\mathbb Z$ [Amoroso-Patt, 1972], **undecidable** on $\mathbb Z^2$ [Kari, 1992]
- for maps $X \to X$ with X finite: injectivity implies surjectivity

Injectivity/surjectivity

- injectivity: $\forall x, \forall y, \forall z, (x \rightarrow z \land y \rightarrow z) \Rightarrow x = y$
- surjectivity: $\forall x, \exists y, y \rightarrow x$
- decidable on \mathbb{Z} [Amoroso-Patt, 1972], **undecidable** on \mathbb{Z}^2 [Kari, 1992]
- for maps $X \to X$ with X finite: injectivity implies surjectivity

Theorem (Folklore)

On \mathbb{Z}^d any injective CA is surjective.

Conjecture [Gottschalk, 1973]

Any injective CA on any Cayley graph of f.g. group is surjective

Injectivity/surjectivity

• injectivity: $\forall x, \forall y, \forall z, (x \rightarrow z \land y \rightarrow z) \Rightarrow x = y$

• surjectivity:
$$\forall x, \exists y, y \rightarrow x$$

• decidable on \mathbb{Z} [Amoroso-Patt, 1972], **undecidable** on \mathbb{Z}^2 [Kari, 1992]

• for maps $X \to X$ with X finite: injectivity implies surjectivity

Theorem (Folklore)

On \mathbb{Z}^d any injective CA is surjective.

Conjecture [Gottschalk, 1973]

Any injective CA on any Cayley graph of f.g. group is surjective

Exercise

Find a CA on a graph G which is injective but not surjective

Set of graphs:

$$\mathcal{L}_{\phi,f} = \{ G : F_{G,f} \models \phi \}$$

Set of graphs:

$$\mathcal{L}_{\phi,f} = \{ G : F_{G,f} \models \phi \}$$

Theorem

If \mathcal{L} is a set of graphs, the following are equivalent:

$$\mathcal{L} = \{ G : G \models \Psi \}$$
 for some **MSO** Ψ ,

$$\mathcal{L} = \mathcal{L}_{\phi, f}$$
 for some **FO** ϕ and **local rule** f .

+ effective translations between Ψ and (ϕ, f) .

Example: Connected graphs

• *simplification:* undirected graphs and $\Delta = \{u\}$

Example: Connected graphs

• simplification: undirected graphs and $\Delta = \{u\}$

$$f(L) = \begin{cases} 1 - L(\epsilon) & \text{if } L(\epsilon) \in \{0, 1\} \\ a_{i+1 \mod 3} & \text{if } L(\epsilon) = a_i \text{ and } \{0, 1\} \cap L(u) = \emptyset \\ 0 & \text{else.} \end{cases}$$

Example: Connected graphs

• simplification: undirected graphs and $\Delta = \{u\}$

$$f(L) = \begin{cases} 1 - L(\epsilon) & \text{if } L(\epsilon) \in \{0, 1\} \\ a_{i+1 \mod 3} & \text{if } L(\epsilon) = a_i \text{ and } \{0, 1\} \cap L(u) = \emptyset \\ 0 & \text{else.} \end{cases}$$

Claim

G connected **IFF** $F_{G,f}$ has no periodic orbit of minimal period 6.

Set of local rules:

$$\mathcal{F}_{\mathcal{G},\phi} = \{ f : \mathcal{F}_{\mathcal{G},f} \models \phi \}$$

Model checking of ϕ on *G*:

- *input*: local rule *f*
- question: $f \in \mathcal{F}_{G,\phi}$?

Set of local rules:

$$\mathcal{F}_{\mathcal{G},\phi} = \{ f : \mathcal{F}_{\mathcal{G},f} \models \phi \}$$

Model checking of ϕ on *G*:

- *input*: local rule f
- question: $f \in \mathcal{F}_{G,\phi}$?

Theorem

 \forall MSO formula Ψ , $\exists \phi$ and f s.t. \forall **connected** graph G:

$$G \in \mathcal{L}_{\Psi} \Leftrightarrow G \in \mathcal{L}_{\phi,f}.$$

 ϕ only depends on the **prefix signature** of Ψ .

Set of local rules:

$$\mathcal{F}_{\mathcal{G},\phi} = \{f : \mathcal{F}_{\mathcal{G},f} \models \phi\}$$

Model checking of ϕ on G:

- *input*: local rule f
- question: $f \in \mathcal{F}_{G,\phi}$?

Corollary

G connected, \mathcal{F} fragment of MSO of fixed **prefix signature**. Then there is ϕ s.t.

$$\mathcal{F} \leq_m \mathcal{F}_{\mathcal{G},\phi}$$

 \mathcal{F} undecidable on $G \Rightarrow$ model checking of ϕ undecidable on G.

More corollaries

Corollary (model checking)

 \exists FO formula ϕ such that \forall *G* connected bounded-degree

 ϕ model checking decidable on ${\cal G}$ IFF MSO model checking decidable on ${\cal G}$

Ballier-Stein conjecture

On Cayley graphs of f.g. groups, this holds with $\phi = \exists x, x \rightarrow x$

More corollaries

Corollary (model checking)

 \exists FO formula ϕ such that \forall *G* connected bounded-degree

 ϕ model checking decidable on ${\it G}$ IFF MSO model checking decidable on ${\it G}$

Ballier-Stein conjecture

On Cayley graphs of f.g. groups, this holds with $\phi = \exists x, x \rightarrow x$

Corollary (finite satisfiability)

 \exists FO formula ϕ such that the following problem is **undecidable**:

- *input*: local rule *f*
- question: is there some finite G with $F_{G,f} \models \phi$

FO logic on CA orbits = MSO logic

read the paper ③

- slightly more general def of CA
- other corollaries (non-arithmetical lower bounds)
- extension of FO and variants of domino problem
- short-term research directions

broadening Ballier-Stein conjecture

- how $\phi \mapsto \text{Turing-degree}(\mathcal{F}_{\phi,G})$ depends on *G*?
- beyond Cayley graphs + FO extension
- NB: ∃ 4-regular graph with decidable domino problem but undecidable MSO

broadening Gottschalk conjecture

- what are the FO tautologies? how do they depend on G?
- **s** same in FO extension (\rightarrow Garden-of-Eden Theorem)

Cellular Automata and Group

A word about the proof

MSO $\exists X_1, \forall x_2, \exists X_3, R(X_1, x_2X_3)$ FO + local rule

 $\bigcap_{c_1} \sim X_1$ $\forall c_1, \exists c_2, \forall c_3, \qquad \begin{array}{c} \uparrow^{\neq} \\ c_2 \sim (X_1, x_2) \\ \uparrow^{\neq} \\ c_3 \sim (X_1, x_2, X_3) \end{array}$

A word about the proof

FO + local rule

 $\forall c_1, \exists c_2, \forall c_3, \qquad \begin{pmatrix} \bigcirc \\ c_1 \sim X_1 \\ \uparrow^{\neq} \\ c_2 \sim (X_1, x_2) \\ \uparrow^{\neq} \\ c_3 \sim (X_1, x_2, X_3) \end{pmatrix}$

problems:

MSO

 $\exists X_1, \forall x_2, \exists X_3, R(X_1, x_2X_3)$

1 first-order variable assignment \sim configurations with a single 1 2 checking $R(X_1, x_2, X_3)$ by local rules when in configuration c_3 3 dependence on prefix signature only

A word about the proof

FO + local rule

 $\mathsf{MSO} \\ \exists X_1, \forall x_2, \exists X_3, R(X_1, x_2 X_3)$

$$orall c_1, \exists c_2, orall c_3, egin{array}{cl} & () & c_1 \sim X_1 & \ \uparrow^{
eq} & c_2 \sim (X_1, x_2) & \ \uparrow^{
eq} & c_3 \sim (X_1, x_2, X_3) \end{array}$$

problems:

- 1 first-order variable assignment \sim configurations with a single 1 2 checking $R(X_1, x_2, X_3)$ by local rules when in configuration c_3
- **3** dependence on prefix signature only

■ solutions: two "sub-routines" combining FO + local rules

- *leader election* (configurations with a single 1)
- agreement (uniform configurations)