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m G = (V, E) digraph, edges labeled by A (finite)

m Q : finite set of states
m QY : configurations

CA are maps @V — QY coming from a local rule

m LV : finite set of possible local views (def. on next slide)
m L, <€ LV : local view at v in configuration ¢
mf: LY — Q: local CA rule

CA global map F : QY = Qv

FlEly, = iy el
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m A={a b}
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Cellular Automata

m A = labels on edges

m k : lookup distance (locality)
m LV = ATk 29 set of possible local views

m Q=1{0,1,2}
m A={a b}
m k=2

G + local rule £ :

Lyc=w—{c: vi>v'}

w Ly,c(w)
€ {0}
O 2| {0
b b {0,1}
bc@ﬁC;ib aa {0}
@ ab | {0,1}
ba | {0,2}
bb | {0,1,2}

LY — Q ~» global map F¢r: QY — Qv
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Cellular Automata

m G = Cayley(Z,A) with A = {—1,+1}

+1 +1 +1 +1

m Q=1{0,1}

mk=1

m LV = (L(-1),L(e), L(1)) ~ @3
mL,c~(cv—1,¢,C41)

m f(a,b,c) =a+ bmod 2

> our def. is equivalent to the classical one on Cayley graphs



FO logics on CA orbits
m FO(=,—)
m variables = configurations
m x — y means “F(x) =y"
m model checking of ¢ on G (f given as input):

FerEo¢?



FO logics on CA orbits
m FO(=,—)
m variables = configurations
m x — y means “F(x) =y"
m model checking of ¢ on G (f given as input):

FerEo¢?

Fixed-point: dx,x — x

m equivalent to the domino problem on Cayley graphs
m decidable on Z [Folklore]
m undecidable on 72 [Berger, 1966]



FO logics on CA orbits
m FO(=,—)
m variables = configurations
m x — y means “F(x) =y"
m model checking of ¢ on G (f given as input):

FerEo¢?

Fixed-point: dx,x — x

m equivalent to the domino problem on Cayley graphs
m decidable on Z [Folklore]
m undecidable on 72 [Berger, 1966]

Conjecture [Ballier-Stein, 2013]

On Cayley graphs of f.g. groups:
domino problem decidable IFF MSO model checking decidable
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FO logics on CA orbits

Injectivity /surjectivity

m injectivity: Vx,Vy,Vz,(x - zANy 5 z)=x=y
B surjectivity: Vx,3dy,y — x

m decidable on Z [Amoroso-Patt, 1972], undecidable on 72
[Kari, 1992]

m for maps X — X with X finite: injectivity implies surjectivity
Theorem (Folklore)

On Z9 any injective CA is surjective.
Conjecture [Gottschalk, 1973]
Any injective CA on any Cayley graph of f.g. group is surjective

Exercise

Find a CA on a graph G which is injective but not surjective
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Main theorem 1

/;‘.
S
Set of graphs: i

Lor=1{G:Fer = ¢} For ko

Theorem

If £ is a set of graphs, the following are equivalent:
m L={G:G [ V} for some MSO V,
m L= Ly¢ for some FO ¢ and local rule f.

+ effective translations between W and (¢, ).
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Example: Connected graphs
m simplification: undirected graphs and A = {u}

m Q=1{0,1,a,a1,a} Q
&

m {0,1} spreads over {ag, a1, a»}

1-L(e) if L(e) € {0,1}
f(L)=1< ait1mod3 if L(e) =a; and {0,1} N L(u) =10
0 else.

Claim

G connected IFF F¢ ¢ has no periodic orbit of minimal period 6.
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Feo=1f: For = ¢}

Model checking of ¢ on G:
m input: local rule

m question: f € Fg g4 7
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Main theorem 2

Set of local rules: &
kel
Fep=1f : Fer = ¢} &

Ferl=¢
Model checking of ¢ on G:

m input: local rule

m question: f € Fg g4 7

Theorem
V MSO formula W, 3 ¢ and f s.t. V connected graph G:

GEEw@GGE(b,f.

¢ only depends on the prefix signature of V.



Main theorem 2

Set of local rules: &
kel
Fep=1f : Fer = ¢} &

FerEo
Model checking of ¢ on G:
m input: local rule

m question: f € Fg g4 7

Corollary

G connected, F fragment of MSO of fixed prefix signature. Then

there is ¢ s.t.
F <m Fe,¢

F undecidable on G = model checking of ¢ undecidable on G.
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More corollaries

Corollary (model checking)
3 FO formula ¢ such that V G connected bounded-degree

¢ model checking decidable on G
IFF MSO model checking decidable on G

Ballier-Stein conjecture

On Cayley graphs of f.g. groups, this holds with ¢ = dx,x — x

Corollary (finite satisfiability)

3 FO formula ¢ such that the following problem is undecidable:
m input: local rule f
m question: is there some finite G with Fg ¢ = ¢



FO logic on CA orbits = MSO logic

m read the paper ©

slightly more general def of CA

other corollaries (non-arithmetical lower bounds)
extension of FO and variants of domino problem
short-term research directions

m broadening Ballier-Stein conjecture
m how ¢ — Turing-degree(Fy, ¢) depends on G?
m beyond Cayley graphs + FO extension

M NB: 3 4-regular graph with decidable domino problem but undecidable MSO

m broadening Gottschalk conjecture

m what are the FO tautologies? how do they depend on G?
m same in FO extension (— Garden-of-Eden Theorem)

Cellular
Automata
and Groups

m “Cellular automata and groups” ceccherini-Silberstein & Coomaert



A word about the proof

MSO
X1, Vx2, 3X3, R(X1, x2X3)

FO + local rule
A
Cl ~ Xl
3 T#
Vey, dep, Vs, G ~ (X1, x2)

1+

3~ (X].a X2, X3)
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A word about the proof

MSO FO + local rule
X1, Vx2,3X3, R(X1, x0X3) 0

1~ X

1+

&~ (Xl, X2)

1+

3~ (X].a X2, X3)

VCl, E|C2,VC3,

m problems:

first-order variable assignment ~ configurations with a single 1
checking R(X1, x2, X3) by local rules when in configuration c;
dependence on prefix signature only

m solutions: two “sub-routines” combining FO + local rules

m Jeader election (configurations with a single 1)
m agreement (uniform configurations)



