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m Q finite alphabet
mneN

m dynamically: all orbits are ultimately periodic

m yes but Q" has some structure!
mXxX=(X,...,Xn)
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m define digraph G = ({1,--- ,n}, E) by

(ij)cEo {3).(,J/ZF(X)/'7§F(}.’); | .
with x and y differing only at coordinate j
m examples:
mFfF=0---0<1---1 B F(X)k = Xk+1 mod n
m Gr = m Gr=
Q @)
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Automata Networks Theory
Robert’ Theorem
If Gr is acyclic then F is nilpotent (F" is constant).

Feedback bound
|{x: F(x) = x}| < |Q(%"
v(GF) = size of minimal feedback vertex set

m many refinements using signed graphs, e.g.:

Thomas’ first rule
If G has no positive cycle then F has at most one fixed point.

Positive feedback bound
{x : F(x) = x}| < |Q"(Ce)
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Classical Expansiveness
m (X, d) compact metric space
m a dynamical system (F, X) is expansive if

Je: x £y = 3t, d(F(x), Fi(y)) > ¢

m a cellular automaton F : Q4 — Q% is expansive if

time

I space

observing the trace of an orbit determines the whole orbit.

m observability in automata networks
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Expansive Automata Networks
m F expansive if for all j

X#y=3t>0:Fl(x); #Fl(y);

m trace 7; : x — (F(x);, F2(x);, F3(x);, .. .)
m F expansive < 7; injective for all /

B F=0--0&1---1 .F(X)k:Xk+1modn
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m variations on the definition
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Expansion time

mx#y=3t>0:F!(x); #F(y)
m but how large must be t?

Bl x e (F(X)i,. .., Fi(x))

m expansion time of F:

T(F) = min{t : 7} injective for all i}

Proposition
Kl for any expansive F: n < T(F) < |Q|"
B (vn) there is F with T(F) = |Q|" — |Q| — 1

m twisted lexicographic order:
00 —-01—-02—-10—-11 12220 —-22 - 21 — 00



Linear networks

m Q = F, finite field and Q" vectorial space
m F: Q" — Q"can be alinear map



Linear networks

m Q = F, finite field and Q" vectorial space
m F: Q" — Q"can be alinear map

F linear and expansive = expansion time is n.



Linear networks

m Q = F, finite field and Q" vectorial space
m F: Q" — Q"can be alinear map

F linear and expansive = expansion time is n.

m Then 7 is a linear bijective map:

M - My,
My M
where F' = (M}))

m for F linear:

F expansive < det(7") # 0 for all i



Graphs allowing expansiveness

m for which G is there F expansive with Gg = G?
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Graphs allowing expansiveness

m necessary condition 1: G strongly connected
B necessary condition 2: [Nt(S)| > |S|forall SC V

Hall’s mariage theorem

condition 2 < G partitioned into disjoint cycles.
m G is admissible if it verifies cond. 1 and 2

Theorem
There exists F expansive with G = G < G admissible

m robust to slight variations in the definition of expansiveness
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m probabilistic proof, we actually show for any admissible G:

Theorem
For large Fq a random linear F with GF = G is expansive.

m F expansive < det(r]") # 0 for all i
m view F as matrix (X;;) where X;; are formal variables
mX,;=0&(,))eG
m then det(7") € Fq[Xj )]
Schwartz-Zippel lemma
P e Fg[Xi, ..., Xk], non-zero, total degree d, then:
d
Pr(P(ay,...,ak) =0) < —
IFql

for ay, ..., ax chosen uniformly independently in Fy.



Proof of the Theorem

det(rf') = > (=1 T[(7o(o)t
t=1
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Lower bounds on Q
m E(Q, G): set of expansive F with alphabet Q and GF = G

Theorem
For any Q there is an admissible G such that E(Q, G) = 0.

2
m n~q?9 whereqg=|Q|
m g2 is sufficient for linear networks

g=2 mod4
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Open

Upper-bound on Q for all admissible graphs of fixed degree d?
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Super-expansiveness
X1 ... Xp X1 ... Xn

swn
awn

bijective expansive in time n

aw

mO= ((i17t1),---a(in7tn))
B T0o=XH (Ft1(x)i17"'7Ftn(X)in)

Definition

F super-expansive if 7o injective for any O of length n.
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Super-expansiveness
m F super-expansive = G complete graph

Theorem

For large F4 a random linear F with Gr = Kj is
super-expansive.

m same kind of proof

m Bonus! a MDS code:

(X1 XpF(X)1 - F(X)n- - F(X)1 - F"(X)n : (x;) € Q")

m Singleton bound: #words < g'éngth—distance+1

2 2
m Inour case: " < g7 —(m" -1+



Going further

m expansion frequency

m block-sequential update schedules

m link with other “topological” properties

m observability in general



