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Automata Networks

F : Qn → Qn

Q finite alphabet
n ∈ N

dynamically: all orbits are ultimately periodic

yes but Qn has some structure!
x = (x1, . . . , xn)
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Dependency Graph
given F : Qn → Qn

define digraph GF = ({1, · · · ,n},E) by

(i , j) ∈ E ⇔

{
∃x , y : F (x)i 6= F (y)i

with x and y differing only at coordinate j

examples:

F = 0 · · · 0↔ 1 · · · 1

GF =

1

2

3

4

F (x)k = xk+1 mod n
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Automata Networks Theory

Robert’ Theorem

If GF is acyclic then F is nilpotent (F n is constant).

Feedback bound

∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν(GF )

ν(GF ) = size of minimal feedback vertex set

many refinements using signed graphs, e.g.:

Thomas’ first rule

If GF has no positive cycle then F has at most one fixed point.

Positive feedback bound∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν+(GF )



Automata Networks Theory
Robert’ Theorem

If GF is acyclic then F is nilpotent (F n is constant).

Feedback bound

∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν(GF )

ν(GF ) = size of minimal feedback vertex set

many refinements using signed graphs, e.g.:

Thomas’ first rule

If GF has no positive cycle then F has at most one fixed point.

Positive feedback bound∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν+(GF )



Automata Networks Theory
Robert’ Theorem

If GF is acyclic then F is nilpotent (F n is constant).

Feedback bound

∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν(GF )

ν(GF ) = size of minimal feedback vertex set

many refinements using signed graphs, e.g.:

Thomas’ first rule

If GF has no positive cycle then F has at most one fixed point.

Positive feedback bound∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν+(GF )



Automata Networks Theory
Robert’ Theorem

If GF is acyclic then F is nilpotent (F n is constant).

Feedback bound

∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν(GF )

ν(GF ) = size of minimal feedback vertex set

many refinements using signed graphs, e.g.:

Thomas’ first rule

If GF has no positive cycle then F has at most one fixed point.

Positive feedback bound∣∣{x : F (x) = x}
∣∣ ≤ |Q|ν+(GF )



Classical Expansiveness

(X ,d) compact metric space

a dynamical system (F ,X ) is expansive if
∃ε : x 6= y ⇒ ∃t , d(F t(x),F t(y)) > ε

a cellular automaton F : QZ → QZ is expansive if

time

space

observing the trace of an orbit determines the whole orbit.

observability in automata networks
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F expansive if for all i

x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

trace τi : x 7→ (F (x)i ,F 2(x)i ,F 3(x)i , . . .)

F expansive⇔ τi injective for all i

F = 0 · · · 0↔ 1 · · · 1

1
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Expansive Automata Networks
F expansive if for all i

x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

trace τi : x 7→ (F (x)i ,F 2(x)i ,F 3(x)i , . . .)

F expansive⇔ τi injective for all i

F = 0 · · · 0↔ 1 · · · 1

1

2

3

0

F (x)k = xk+1 mod n

1

2

3

0

variations on the definition



Expansive Automata Networks
F expansive if for all i

x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

trace τi : x 7→ (F (x)i ,F 2(x)i ,F 3(x)i , . . .)

F expansive⇔ τi injective for all i

F = 0 · · · 0↔ 1 · · · 1

1

2

3

0

F (x)k = xk+1 mod n

1

2

3

0

variations on the definition



Expansive Automata Networks
F expansive if for all i

x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

trace τi : x 7→ (F (x)i ,F 2(x)i ,F 3(x)i , . . .)

F expansive⇔ τi injective for all i

F = 0 · · · 0↔ 1 · · · 1

1

2

3

0

F (x)k = xk+1 mod n

1

2

3

0

variations on the definition



Expansive Automata Networks
F expansive if for all i

x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

trace τi : x 7→ (F (x)i ,F 2(x)i ,F 3(x)i , . . .)

F expansive⇔ τi injective for all i

F = 0 · · · 0↔ 1 · · · 1

1

2

3

0

F (x)k = xk+1 mod n

1

2

3

0

variations on the definition



Expansion time
x 6= y ⇒ ∃t > 0 : F t(x)i 6= F t(y)i

but how large must be t?

τ t
i : x 7→ (F (x)i , . . . ,F t(x)i)

expansion time of F :

T (F ) = min{t : τ t
i injective for all i}

Proposition

1 for any expansive F : n ≤ T (F ) ≤ |Q|n

2 (∀n) there is F with T (F ) = |Q|n − |Q| − 1

twisted lexicographic order:
00→ 01→ 02→ 10→ 11→ 12→ 20→ 22→ 21→ 00
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Linear networks

Q = Fq finite field and Qn vectorial space
F : Qn → Qn can be a linear map

F linear and expansive⇒ expansion time is n.

Then τn
i is a linear bijective map:

τn
i =

M1,i · · · Mn,i
... · · ·

...
Mn

1,i · · · Mn
n,i


where F t = (M t

i,j)

for F linear:

F expansive⇔ det(τn
i ) 6= 0 for all i
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Graphs allowing expansiveness

for which G is there F expansive with GF = G?

0 1 2

3

0 1 2

0 1 2 0 1 2 3



Graphs allowing expansiveness

necessary condition 1: G strongly connected

necessary condition 2: |N+(S)| ≥ |S| for all S ⊆ V

Hall’s mariage theorem

condition 2⇔ G partitioned into disjoint cycles.

G is admissible if it verifies cond. 1 and 2

Theorem

There exists F expansive with GF = G⇔ G admissible

robust to slight variations in the definition of expansiveness
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Proof of the Theorem
probabilistic proof, we actually show for any admissible G:

Theorem

For large Fq a random linear F with GF = G is expansive.

F expansive⇔ det(τn
i ) 6= 0 for all i

view F as matrix (Xi,j) where Xi,j are formal variables
Xi,j = 0⇔ (i , j) ∈ G
then det(τn

i ) ∈ Fq[Xi,j ]

Schwartz–Zippel lemma

P ∈ Fq[X1, . . . ,Xk ], non-zero, total degree d , then:

Pr(P(a1, . . . ,ak ) = 0) ≤ d
|Fq|

for a1, . . . ,ak chosen uniformly independently in Fq.
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Proof of the Theorem

det(τn
i ) =

∑
σ

(−1)s(σ)
n∏

t=1

(τn
i )σ(t),t

i



Lower bounds on Q
E(Q,G): set of expansive F with alphabet Q and GF = G

Theorem

For any Q there is an admissible G such that E(Q,G) = ∅.

n ∼ qqq2

where q = |Q|
q2 is sufficient for linear networks

0 1 2

3

q ≡ 2 mod 4

Open

Upper-bound on Q for all admissible graphs of fixed degree d?
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Super-expansiveness
x1 · · · xn

tim
e

bijective

x1 · · · xn
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e

expansive in time n

x1 · · · xn

tim
e

O =
(
(i1, t1), . . . , (in, tn)

)
τO = x 7→

(
F t1(x)i1 , . . . ,F

tn(x)in
)

Definition

F super-expansive if τO injective for any O of length n.



Super-expansiveness
x1 · · · xn

tim
e

bijective

x1 · · · xn

tim
e

expansive in time n

x1 · · · xn

tim
e

O =
(
(i1, t1), . . . , (in, tn)

)
τO = x 7→

(
F t1(x)i1 , . . . ,F

tn(x)in
)

Definition

F super-expansive if τO injective for any O of length n.



Super-expansiveness
x1 · · · xn

tim
e

bijective

x1 · · · xn

tim
e

expansive in time n

x1 · · · xn

tim
e

O =
(
(i1, t1), . . . , (in, tn)

)
τO = x 7→

(
F t1(x)i1 , . . . ,F

tn(x)in
)

Definition

F super-expansive if τO injective for any O of length n.



Super-expansiveness
x1 · · · xn

tim
e

bijective

x1 · · · xn

tim
e

expansive in time n

x1 · · · xn

tim
e

O =
(
(i1, t1), . . . , (in, tn)

)
τO = x 7→

(
F t1(x)i1 , . . . ,F

tn(x)in
)

Definition

F super-expansive if τO injective for any O of length n.



Super-expansiveness

F super-expansive⇒ GF complete graph

Theorem

For large Fq a random linear F with GF = Kn is
super-expansive.

same kind of proof

Bonus! a MDS code:{
x1 · · · xnF (x)1 · · ·F (x)n · · ·F n(x)1 · · ·F n(x)n : (xi) ∈ Qn}

Singleton bound: #words ≤ qlength−distance+1

In our case: qn ≤ qn2−(n2−n+1)+1
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Going further

expansion frequency

block-sequential update schedules

link with other “topological” properties

observability in general


