Expansive Automata Networks Journées SDA2 2019

F. Bridoux, M. Gadouleau, G. Theyssier

Institut de mathématiques de Marseille (CNRS, Université Aix-Marseille)

juin 2019

Automata Networks

$$F: Q^n \rightarrow Q^n$$

Q finite alphabet

 $\mathbf{n} \in \mathbb{N}$

Automata Networks

$$F: Q^n
ightarrow Q^n$$

Q finite alphabet

 $n \in \mathbb{N}$

dynamically: all orbits are ultimately periodic

Automata Networks

$$F: Q^n
ightarrow Q^n$$

Q finite alphabet

 $n \in \mathbb{N}$

■ dynamically: all orbits are ultimately periodic

■ yes but *Qⁿ* has some structure!

 $\blacksquare x = (x_1, \ldots, x_n)$

Dependency Graph

given F: Qⁿ → Qⁿ
define digraph G_F = ({1, · · · , n}, E) by
(i,j) ∈ E ⇔ $\begin{cases} \exists x, y : F(x)_i \neq F(y)_i \\ with x and y differing only at coordinate j \end{cases}$

Dependency Graph

given F: Qⁿ → Qⁿ
define digraph G_F = ({1, ..., n}, E) by
(i,j) ∈ E ⇔

$$\begin{cases} \exists x, y : F(x)_i \neq F(y)_i \\ with x and y differing only at coordinate j \end{cases}$$

examples:

 $\Box G_F =$

 $\blacksquare \ F = 0 \cdots 0 \leftrightarrow 1 \cdots 1$

 $\bullet F(x)_k = x_{k+1 \bmod n}$

4

2

Robert' Theorem

If G_F is acyclic then F is nilpotent (F^n is constant).

Feedback bound

$$\left|\{x:F(x)=x\}\right|\leq |Q|^{\nu(G_F)}$$

 $\nu(G_F) = size of minimal feedback vertex set$

Robert' Theorem

If G_F is acyclic then F is nilpotent (F^n is constant).

Feedback bound

$$\left|\{x:F(x)=x\}\right|\leq |Q|^{\nu(G_F)}$$

 $\nu(G_F) = size of minimal feedback vertex set$

many refinements using signed graphs, e.g.:

Robert' Theorem

If G_F is acyclic then F is nilpotent (F^n is constant).

Feedback bound

$$\left|\{x:F(x)=x\}\right|\leq |Q|^{\nu(G_F)}$$

 $\nu(G_F) = size of minimal feedback vertex set$

many refinements using signed graphs, e.g.:

Thomas' first rule

If G_F has no positive cycle then F has at most one fixed point.

Positive feedback bound

$$\left|\{x:F(x)=x\}\right|\leq |Q|^{\nu^+(G_F)}$$

 \blacksquare (*X*, *d*) compact metric space

- \blacksquare (*X*, *d*) compact metric space
- **a** dynamical system (F, X) is expansive if

$$\exists \epsilon : x \neq y \Rightarrow \exists t, d(F^t(x), F^t(y)) > \epsilon$$

- (X, d) compact metric space
- a dynamical system (F, X) is expansive if

$$\exists \epsilon : x \neq y \Rightarrow \exists t, d(F^t(x), F^t(y)) > \epsilon$$

• a cellular automaton $F: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}$ is expansive if

observing the trace of an orbit determines the whole orbit.

- (X, d) compact metric space
- a dynamical system (F, X) is expansive if

$$\exists \epsilon : x \neq y \Rightarrow \exists t, d(F^t(x), F^t(y)) > \epsilon$$

• a cellular automaton $F: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}$ is expansive if

observing the trace of an orbit determines the whole orbit.

observability in automata networks

F expansive if for all *i*

$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

F expansive if for all i

$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

- trace $\tau_i : x \mapsto (F(x)_i, F^2(x)_i, F^3(x)_i, \ldots)$
- **F** expansive $\Leftrightarrow \tau_i$ injective for all *i*

п

F expansive if for all *i*

$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

■ trace
$$\tau_i : x \mapsto (F(x)_i, F^2(x)_i, F^3(x)_i, ...)$$

■ *F* expansive $\Leftrightarrow \tau_i$ injective for all *i*

$$F = 0 \cdots 0 \leftrightarrow 1 \cdots 1$$

$$F(x)_{k} = x_{k+1 \mod n}$$

(2

F expansive if for all i

$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

■ trace
$$\tau_i : x \mapsto (F(x)_i, F^2(x)_i, F^3(x)_i, ...)$$

■ *F* expansive $\Leftrightarrow \tau_i$ injective for all *i*

$$F = 0 \cdots 0 \leftrightarrow 1 \cdots 1$$

$$F(x)_{k} = x_{k+1 \mod n}$$

variations on the definition

• $x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$

■ but how large must be t?

• $x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$

but how large must be t?

$$\bullet \tau_i^t : \mathbf{x} \mapsto (F(\mathbf{x})_i, \dots, F^t(\mathbf{x})_i)$$

expansion time of *F*:

$$T(F) = \min\{t : \tau_i^t \text{ injective for all } i\}$$

•
$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

but how large must be t?

$$\bullet \ \tau_i^t : \mathbf{X} \mapsto (F(\mathbf{X})_i, \dots, F^t(\mathbf{X})_i)$$

expansion time of *F*:

$$T(F) = \min\{t : \tau_i^t \text{ injective for all } i\}$$

Proposition

1 for any expansive $F: n \leq T(F) \leq |Q|^n$

•
$$x \neq y \Rightarrow \exists t > 0 : F^t(x)_i \neq F^t(y)_i$$

but how large must be t?

$$\tau_i^t : x \mapsto (F(x)_i, \ldots, F^t(x)_i)$$

expansion time of *F*:

$$T(F) = \min\{t : \tau_i^t \text{ injective for all } i\}$$

Proposition

- **1** for any expansive $F: n \leq T(F) \leq |Q|^n$
- **2** (\forall *n*) there is *F* with *T*(*F*) = $|Q|^n |Q| 1$

■ twisted lexicographic order: $00 \rightarrow 01 \rightarrow 02 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 20 \rightarrow 22 \rightarrow 21 \rightarrow 00$

Linear networks

• $Q = \mathbb{F}_q$ finite field and Q^n vectorial space

• $F: Q^n \to Q^n$ can be a linear map

Linear networks

• $Q = \mathbb{F}_q$ finite field and Q^n vectorial space

• $F: Q^n \to Q^n$ can be a linear map

F linear and expansive \Rightarrow expansion time is *n*.

Linear networks

• $Q = \mathbb{F}_q$ finite field and Q^n vectorial space

• $F: Q^n \to Q^n$ can be a linear map

F linear and expansive \Rightarrow expansion time is *n*.

Then τ_i^n is a linear bijective map:

$$\tau_i^n = \begin{pmatrix} M_{1,i} & \cdots & M_{n,i} \\ \vdots & \cdots & \vdots \\ M_{1,i}^n & \cdots & M_{n,i}^n \end{pmatrix}$$

where $F^t = (M_{i,j}^t)$ for *F* linear:

F expansive $\Leftrightarrow det(\tau_i^n) \neq 0$ for all *i*

• for which G is there F expansive with $G_F = G$?

necessary condition 1: G strongly connected

necessary condition 1: *G* strongly connected
 necessary condition 2: |*N*⁺(*S*)| ≥ |*S*| for all *S* ⊆ *V*

necessary condition 1: *G* strongly connected

• necessary condition 2: $|N^+(S)| \ge |S|$ for all $S \subseteq V$

Hall's mariage theorem

condition 2 \Leftrightarrow *G* partitioned into disjoint cycles.

necessary condition 1: *G* strongly connected

• necessary condition 2: $|N^+(S)| \ge |S|$ for all $S \subseteq V$

Hall's mariage theorem

condition $2 \Leftrightarrow G$ partitioned into disjoint cycles.

■ *G* is *admissible* if it verifies cond. 1 and 2

Theorem

There exists *F* expansive with $G_F = G \Leftrightarrow G$ admissible

necessary condition 1: *G* strongly connected

• necessary condition 2: $|N^+(S)| \ge |S|$ for all $S \subseteq V$

Hall's mariage theorem

condition $2 \Leftrightarrow G$ partitioned into disjoint cycles.

■ G is admissible if it verifies cond. 1 and 2

Theorem

There exists *F* expansive with $G_F = G \Leftrightarrow G$ admissible

robust to slight variations in the definition of expansiveness

■ probabilistic proof, we actually show for any admissible *G*:

■ probabilistic proof, we actually show for any admissible *G*:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

probabilistic proof, we actually show for any admissible G:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

■ *F* expansive $\Leftrightarrow det(\tau_i^n) \neq 0$ for all *i*

probabilistic proof, we actually show for any admissible G:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

■ *F* expansive
$$\Leftrightarrow det(\tau_i^n) \neq 0$$
 for all *i*
■ view *F* as matrix (*X_{i,j}*) where *X_{i,j}* are formal variables
■ *X_{i,j}* = 0 \Leftrightarrow (*i*,*j*) \in *G*

probabilistic proof, we actually show for any admissible G:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

■ *F* expansive
$$\Leftrightarrow det(\tau_i^n) \neq 0$$
 for all *i*

• view *F* as matrix $(X_{i,j})$ where $X_{i,j}$ are formal variables

$$\blacksquare X_{i,j} = 0 \Leftrightarrow (i,j) \in G$$

• then $det(\tau_i^n) \in \mathbb{F}_q[X_{i,j}]$

probabilistic proof, we actually show for any admissible G:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

F expansive
$$\Leftrightarrow det(\tau_i^n) \neq 0$$
 for all *i*

• view *F* as matrix $(X_{i,j})$ where $X_{i,j}$ are formal variables

$$X_{i,j} = 0 \Leftrightarrow (i,j) \in G$$

• then $det(\tau_i^n) \in \mathbb{F}_q[X_{i,j}]$

Schwartz–Zippel lemma

 $P \in \mathbb{F}_q[X_1, \dots, X_k]$, non-zero, total degree d, then:

$$Pr(P(a_1,\ldots,a_k)=0) \leq rac{d}{|\mathbb{F}_q|}$$

for a_1, \ldots, a_k chosen uniformly independently in \mathbb{F}_q .

probabilistic proof, we actually show for any admissible G:

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = G$ is expansive.

F expansive
$$\Leftrightarrow det(\tau_i^n) \neq 0$$
 for all *i*

• view *F* as matrix $(X_{i,j})$ where $X_{i,j}$ are formal variables

$$X_{i,j} = 0 \Leftrightarrow (i,j) \in G$$

• then $det(\tau_i^n) \in \mathbb{F}_q[X_{i,j}]$

Schwartz–Zippel lemma

 $P \in \mathbb{F}_q[X_1, \dots, X_k]$, non-zero, total degree d, then:

$$Pr(P(a_1,\ldots,a_k)=0)\leq rac{d}{|\mathbb{F}_q|}$$

for a_1, \ldots, a_k chosen uniformly independently in \mathbb{F}_q .

• E(Q, G): set of expansive *F* with alphabet *Q* and $G_F = G$

• E(Q, G): set of expansive F with alphabet Q and $G_F = G$

Theorem

For any *Q* there is an admissible *G* such that $E(Q, G) = \emptyset$.

• E(Q, G): set of expansive F with alphabet Q and $G_F = G$

Theorem

For any *Q* there is an admissible *G* such that $E(Q, G) = \emptyset$.

$$lacksquare$$
 $n\sim q^{q^{q^2}}$ where $q=|{\cal Q}|$

■ q² is sufficient for **linear** networks

• E(Q, G): set of expansive F with alphabet Q and $G_F = G$

Theorem

For any *Q* there is an admissible *G* such that $E(Q, G) = \emptyset$.

•
$$n \sim q^{q^{q^2}}$$
 where $q = |Q|$

q² is sufficient for **linear** networks

$$q \equiv 2 \mod 4$$

• E(Q, G): set of expansive F with alphabet Q and $G_F = G$

Theorem

For any *Q* there is an admissible *G* such that $E(Q, G) = \emptyset$.

•
$$n \sim q^{q^{q^2}}$$
 where $q = |Q|$

q² is sufficient for linear networks

Open

Upper-bound on Q for all admissible graphs of fixed degree d?

expansive in time n

expansive in time n

expansive in time n

$$O = ((i_1, t_1), \dots, (i_n, t_n)) T_O = x \mapsto (F^{t_1}(x)_{i_1}, \dots, F^{t_n}(x)_{i_n})$$

expansive in time n

•
$$O = ((i_1, t_1), \dots, (i_n, t_n))$$

• $\tau_O = x \mapsto (F^{t_1}(x)_{i_1}, \dots, F^{t_n}(x)_{i_n})$

Definition

F super-expansive if τ_O injective for any O of length n.

• *F* super-expansive \Rightarrow *G_F* complete graph

• *F* super-expansive \Rightarrow *G*_{*F*} complete graph

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = K_n$ is super-expansive.

same kind of proof

• *F* super-expansive \Rightarrow *G*_{*F*} complete graph

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = K_n$ is super-expansive.

- same kind of proof
- Bonus! a MDS code:

$$\{x_1\cdots x_nF(x)_1\cdots F(x)_n\cdots F^n(x)_1\cdots F^n(x)_n: (x_i)\in Q^n\}$$

• *F* super-expansive \Rightarrow *G*_{*F*} complete graph

Theorem

For large \mathbb{F}_q a random linear *F* with $G_F = K_n$ is super-expansive.

- same kind of proof
- Bonus! a MDS code:

$$\{x_1\cdots x_nF(x)_1\cdots F(x)_n\cdots F^n(x)_1\cdots F^n(x)_n: (x_i)\in Q^n\}$$

■ Singleton bound: #words ≤ *q*^{length-distance+1}

■ In our case:
$$q^n \le q^{n^2 - (n^2 - n + 1) + 1}$$

Going further

expansion frequency

block-sequential update schedules

link with other "topological" properties

observability in general