# Some Pictures From Cellular Automata Theory

**Universidad Adolfo Ibañez** 

G. Theyssier

LAMA (CNRS, Université de Savoie, France)

November 2012

# **Overview of the talk**

- 1 Cellular Automata
- 2 Resistance to Noise
- **3** Mixing and Randomizing

### 4 Universality

# **Overview of the talk**

### 1 Cellular Automata

- 2 Resistance to Noise
- **3** Mixing and Randomizing
- 4 Universality

# Cellular automata?

Discrete, discrete, discrete...



1 discrete space

# Cellular automata?

Discrete, discrete, discrete...



- 1 discrete space
- 2 finite set of local states

# Cellular automata?

Discrete, discrete, discrete...



- discrete space
- 2 finite set of local states
- uniform local evolution law at discrete time steps

# Example 1: Game of Life



- states: dead / alive
- **n** = nb of alive cells in neighb.
- **birth:** *n* = 3
- survival: n = 3 or 4
- otherwise death



# **Example 2: Majority**



- states: 0 and 1
- rule: change to majoritary state as seen in neighborhood



# Can you guess the global behavior?



rule: change to next state in the cycle if seen ≥ 3 times in neighborhood, otherwise do not change



# **Overview of the talk**



### 2 Resistance to Noise

**3** Mixing and Randomizing

### 4 Universality

 $\blacksquare$  choose some CA with evolution rule  $\phi$ 

• choose some CA with evolution rule  $\phi$ 

### ■ *e*-perturbation: At each step,

- either choose a state at random
- $\blacksquare$  or apply  $\phi$

• choose some CA with evolution rule  $\phi$ 

#### ■ *e*-perturbation: At each step,

either choose a state at random (proba  $\epsilon$ )

• or apply  $\phi$  (proba 1 –  $\epsilon$ )

• choose some CA with evolution rule  $\phi$ 

#### ■ *c*-perturbation: At each step,

either choose a state at random (proba  $\epsilon$ )

• or apply  $\phi$  (proba 1 –  $\epsilon$ )

#### what we want to study:

Starting from initial configuration x, what is  $\mu_t(x)$ , the distribution of states at time t

 $\blacksquare$  choose some CA with evolution rule  $\phi$ 

#### e-perturbation: At each step,

either choose a state at random (proba  $\epsilon$ )

• or apply  $\phi$  (proba  $1 - \epsilon$ )

### what we want to study:

Starting from initial configuration x. what is  $\mu_t(x)$ . the distribution of states at time t



1 does lim  $\mu_t(x)$  depend on x? 2 can we do something useful with a 
e-pertubated rule?



 $\epsilon\text{-perturbations}$  with  $\epsilon=0.05$ 

Game of Life



Majority



Toom's majority



**rule:** change to majoritary state as seen in neighborhood



### **Theorems**

### Toom's majority

Toom's rule is not ergodic.

### **Reliable computation**

# For any 1D CA F, there is a 3D CA G that can simulate F even with $\epsilon$ -perturbation

(for  $\epsilon$  small enough)



#### P. Gács et. al.

http://www.cs.bu.edu/~gacs/recent-publ.html

# **Overview of the talk**



- 2 Resistance to Noise
- **3** Mixing and Randomizing

### 4 Universality

### **Problem statement**

- fix a deterministic CA rule
- fix a random distribution  $\mu_0$

### **Problem statement**

- fix a deterministic CA rule
- fix a random distribution  $\mu_0$

what we want to study: Starting from a μ<sub>0</sub>-random initial configuration, what is μ<sub>t</sub>, the distribution of states at time t

### Problem statement

- fix a deterministic CA rule
- fix a random distribution  $\mu_0$
- what we want to study: Starting from a  $\mu_0$ -random initial configuration, what is  $\mu_t$ , the distribution of states at time t



1 what is  $\lim \mu_t$ ? 2 what kind of convergence?



The sum modulo rule



- *p* a prime number
- states: {0,...,*p* − 1}
- **rule:**  $\phi(x) = \sum x_i \mod p$



The sum modulo rule



- *p* a prime number
- states: {0,...,*p* − 1}
- **rule:**  $\phi(x) = \sum x_i \mod p$

■ (p=2) power of p time steps





The sum modulo rule



- *p* a prime number
   states: {0,..., *p* − 1}
- **rule:**  $\phi(x) = \sum x_i \mod p$

■ (p=2) power of p time steps



**(p=7)** looking at  $\mu_t$  when starting with many 0s



### Theorem

#### Cesaro mean:

$$M_t = \frac{\sum_{i \le t} \mu_i}{t}$$

### Theorem

#### Cesaro mean:

$$M_t = \frac{\sum_{i \le t} \mu_i}{t}$$

### Averaging

Starting from any distribution of states<sup>\*</sup>,  $M_t$  converges to uniform distribution

a kind of second law of thermodynamics



#### M. Pivato et. al

http://euclid.trentu.ca/pivato/Research/research.html

# **Overview of the talk**



- 2 Resistance to Noise
- **3** Mixing and Randomizing

### 4 Universality

# **Different Notions of Universality**

Cellular Automata can be simulated on a computer

## **Different Notions of Universality**

Cellular Automata can be simulated on a computer

Converse also true: CA can simulate computers*example:* Game of Life!

# **Different Notions of Universality**

Cellular Automata can be simulated on a computer

Converse also true: CA can simulate computers*example:* Game of Life!

Difficulty: how to define "can simulate"?

# Simulation of a CA by another CA

#### intuition:

- simulated / simulator
- **1 cell**  $\leftrightarrow$  *m*  $\times$  *n* block of cells
- **1 state**  $\leftrightarrow$  *m*  $\times$  *n* pattern of states
- 1 time step ↔ a constant number of steps

# Simulation of a CA by another CA

#### intuition:

- simulated / simulator
- **1 cell**  $\leftrightarrow$  *m*  $\times$  *n* block of cells
- **1 state**  $\leftrightarrow$  *m*  $\times$  *n* pattern of states
- **1 time step**  $\leftrightarrow$  a constant number of steps

example:

### **Diagonal shift**









# Simulation of a CA by another CA

#### intuition:

- simulated / simulator
- **1 cell**  $\leftrightarrow$  *m*  $\times$  *n* block of cells
- **1 state**  $\leftrightarrow$  *m*  $\times$  *n* pattern of states
- **1 time step**  $\leftrightarrow$  a constant number of steps

example:

### **Diagonal shift**









T=12

### Definition:

a CA is intrinsically universal if it can simulate any CA

### Definition:

a CA is intrinsically universal if it can simulate any CA

**Theorem:** Game of Life is intrinsically universal!

### Definition:

a CA is intrinsically universal if it can simulate any CA

**Theorem:** Game of Life is intrinsically universal!

Theorem: there is no algorithm to decide intrinsic universality

### Definition:

a CA is intrinsically universal if it can simulate any CA

**Theorem:** Game of Life is intrinsically universal!

Theorem: there is no algorithm to decide intrinsic universality

How common is intrinsic universality?

# How Common is Universality?

partial answer: symmetry is almost surely enough

# How Common is Universality?

partial answer: symmetry is almost surely enough

### what symmetry?



- **1** "hyper-locality":  $\phi(x_1, ..., x_k) \in \{x_1, ..., x_k\}$
- 2 "hyper-isotropy":  $\phi$  invariant under any permutation of neighbors  $(x_i)$

# How Common is Universality?

partial answer: symmetry is almost surely enough

### what symmetry?



- **1** "hyper-locality":  $\phi(x_1, ..., x_k) \in \{x_1, ..., x_k\}$ 2 "hyper-isotropy":  $\phi$  invariant under any permutation of
  - neighbors  $(x_i)$

#### Theorem

For symmetric CA, the proportion of universal CA goes to 1 when size (states or neighborhood) goes to  $\infty$ 

symmetric vs. non-symmetric



# ¡Gracias!