Directional Dynamics of Cellular Automata

M. Delacourt, V. Poupet, M. Sablik and G. Theyssier

LIF / LIF / LATP / LAMA (CNRS, Université de Provence)×3, (CNRS, Université de Savoie)

September 1st 2010

Overview of the talk

1 Cellular Automata

2 Topological Dynamics

3 Directional Dynamics

Overview of the talk

1 Cellular Automata

2 Topological Dynamics

3 Directional Dynamics

Cellular automata

► Syntactical object:

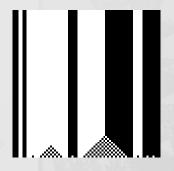
Q state set,

- $V = \{v_1, \ldots, v_k\} \subseteq \mathbb{Z}$ neighborhood,
- $f: Q^V \to Q$ local transition rule

Associated behavior:

- **Q** $^{\mathbb{Z}}$: set of configurations
- $F: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}$ global transition rule defined by

$$F(x)_{z} = f(x_{z+v_1},\ldots,x_{z+v_k})$$

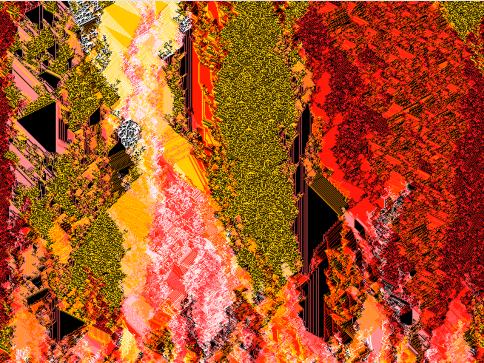


Cellular automata

Examples

•
$$Q = \{0, 1\}$$

• $V = \{-1, 0, 1\}$
• $f(x, y, z) = x + y + z \mod 2$



Overview of the talk

1 Cellular Automata

2 Topological Dynamics

3 Directional Dynamics

CA as Dynamical Systems

Cantor distance:

■ D(x, y) = dist. to center of the 1st cell where x and y differ

Cantor distance: $d(x, y) = 2^{-D(x,y)}$

the space of configurations is compact

CA as Dynamical Systems

Cantor distance:

- D(x, y) = dist. to center of the 1st cell where x and y differ
- Cantor distance: $d(x, y) = 2^{-D(x,y)}$
- the space of configurations is compact

Theorem (Curtis, Hedlund, Lyndon, 69)

CA global functions are exactly the continuous function which commute with shift maps.

• shift map of vector *z*: $\sigma_z(x) = z' \mapsto x_{z+z'}$

■ intuition: continuity = short-term predictability

- \bullet δ : precision on initial conditions
- \bullet : desired long term precision

 \bullet δ : precision on initial conditions

 \bullet : desired long term precision

Sensitivity to initial conditions:

 $\exists \epsilon, \forall x, \forall \delta, \exists y, \exists n : d(x, y) \leq \delta \text{ and } d(F^n(x), F^n(y)) \geq \epsilon$

 \bullet δ : precision on initial conditions

 \bullet : desired long term precision

Sensitivity to initial conditions:

 $\exists \epsilon, \forall x, \forall \delta, \exists y, \exists n : d(x, y) \leq \delta \text{ and } d(F^n(x), F^n(y)) \geq \epsilon$

Equicontinuity point at x:

 $\forall \epsilon, \exists \delta, \forall y : d(x, y) \leq \delta \Rightarrow \forall n, d(F^n(x), F^n(y)) \leq \epsilon$

 \bullet δ : precision on initial conditions

■ *ϵ*: desired long term precision

Sensitivity to initial conditions:

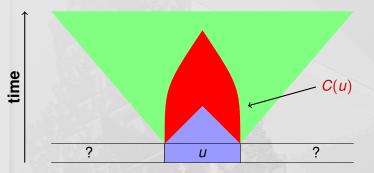
 $\exists \epsilon, \forall x, \forall \delta, \exists y, \exists n : d(x, y) \leq \delta \text{ and } d(F^n(x), F^n(y)) \geq \epsilon$

Equicontinuity point at x:

 $\forall \epsilon, \exists \delta, \forall y : d(x, y) \leq \delta \Rightarrow \forall n, d(F^n(x), F^n(y)) \leq \epsilon$

Eq = set of CA having equicontinuity points

Equicontinuity without topology Consequences C(u) of a word u



$$[u] = \{ x \in Q^{\mathbb{Z}} : x_0 \cdots x_{|u|-1} = u \}$$

$$C(u) = \{ (z,t) : \forall x, y \in [u], F^t(x)_z = F^t(y)_z \}$$

► F a 1D CA with radius r

 Obstacle ^{def} = word with infinite vertical strip in its consequences

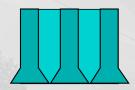
► F a 1D CA with radius r

Obstacle ^{def} = word with infinite vertical strip in its consequences
 Wall ^{def} = obstacle of width > r

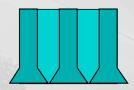
► F a 1D CA with radius r

Obstacle ^{def}/₌ word with infinite vertical strip in its consequences
 Wall ^{def}/₌ obstacle of width ≥ r
 no information can cross a wall

- ► F a 1D CA with radius r
 - Obstacle ^{def}/₌ word with infinite vertical strip in its consequences
 Wall ^{def}/₌ obstacle of width ≥ r
 no information can cross a wall
 concatenation of walls yields a larger wall



- ► F a 1D CA with radius r
 - Obstacle ^{def}/₌ word with infinite vertical strip in its consequences
 Wall ^{def}/₌ obstacle of width ≥ r
 no information can cross a wall
 concatenation of walls yields a larger wall



Theorem (P. Kůrka, 1997)

 $F \in Eq \iff F$ has a wall $\iff F$ is almost everywhere equicontinuous

Examples: do they have walls?

Q = {0,1}
V = {-1,0,1}
f = majority among neighbors

$$Q = \{0, 1\}$$

$$V = \{-1, 0, 1\}$$

$$f(x, y, z) = x + y + z \mod 2$$

Examples: do they have walls?

Q = {0,1}
V = {-1,0,1}
f = majority among neighbors

•
$$Q = \{0, 1\}$$

• $V = \{-1, 0, 1\}$
• $f(x, y, z) = x + y + z \mod 2$

The Usual Refrain

Theorem (Durand-Formenti-Varouchas, 2003)

It is undecidable to know whether a given CA has a wall or not.

(I've been told a short proof of this using Kari's undecidability result on nilpotency)

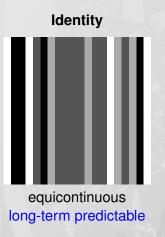
Corollary

There is no computable bound on the size of the smallest wall.

Open problem

Is the set of 1D CA having a wall a Σ_2 -complete set?

Problem with Shift Invariance



Shift sensitive

NOT long-term predictable?

Topological dynamics with Cantor metrics not well adapted!

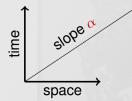
Overview of the talk

1 Cellular Automata

2 Topological Dynamics

3 Directional Dynamics

The Work of M. Sablik (2008)



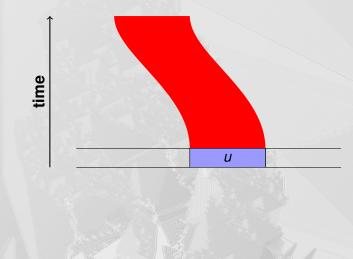
- **1** for any α , consider the 'sloped' system: $t \mapsto \sigma_{\lceil \alpha t \rceil} \circ F^t$
- 2 for each fixed α , Kůrka's results hold
- 3 study the set of slopes α showing a given behavior

Example of Theorem

For any given CA, the set of slopes with equicontinuity points is an interval of reals.

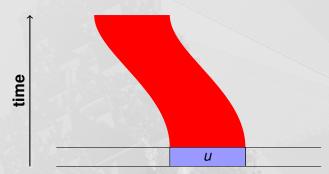
Generalization

Walls along arbitrary curves



Generalization

Walls along arbitrary curves

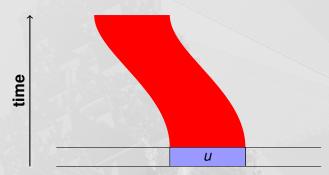


■ theory still works (wall ↔ equicontinuity) but...

useful definition? do 'non-linear walls' exist?

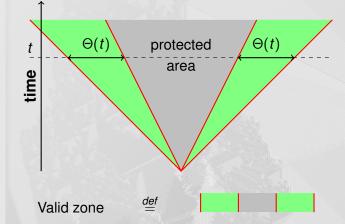
Generalization

Walls along arbitrary curves

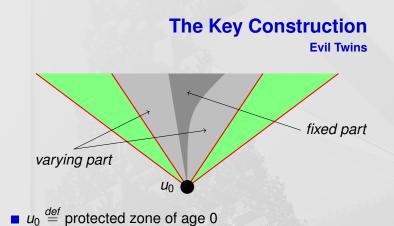


- theory still works (wall ↔ equicontinuity) but...
- useful definition? do 'non-linear walls' exist?
- this talk: YES + other strange behaviors

The Key Construction Outline



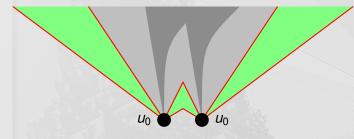
only a valid zone can erase a valid zone
 after *t* steps, the age of any valid zone is at least *t* when two valid zones meet, the older is destroyed



Principle

If the construction can merge with itself **then** $C(u_0)$ is exactly the fixed part of the construction.

The Key Construction Evil Twins

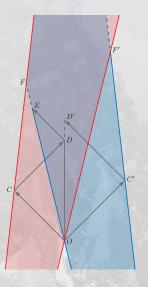


• $u_0 \stackrel{def}{=}$ protected zone of age 0

Principle

If the construction can merge with itself **then** $C(u_0)$ is exactly the fixed part of the construction.

The Key Construction Details



Parabolic Consequences

Theorem

There exists a CA having a wall along a parabolic curve, but without any wall along any linear direction.

Parabolic Consequences

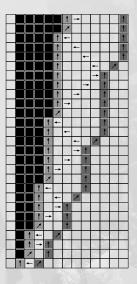
Theorem

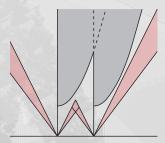
There exists a CA having a wall along a parabolic curve, but without any wall along any linear direction.

Main ideas

- two constructions
- intersection via Cartesian product
- protected zones

2 pictures about the proof





Characterization of linear slopes

Definition

A real α is computably enumerable (c.e.) if there is a computable sequence of rationals converging to it.

left c.e. if the sequence is increasing
right c.e. if the sequence is decreasing

Characterization of linear slopes

Definition

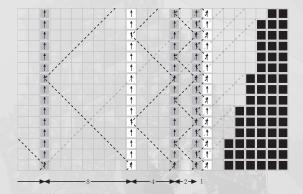
A real α is computably enumerable (c.e.) if there is a computable sequence of rationals converging to it.

left c.e. if the sequence is increasing
 right c.e. if the sequence is decreasing

Theorem

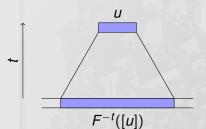
 $[\alpha, \beta]$ is the set of slope of equicontinuity for some CA iff α is lce and β is rce.

1 picture about the proof

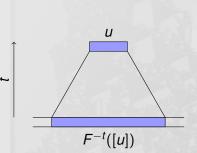


 $\alpha = \sum_{i} \frac{\alpha_i}{2^i} \qquad (here: \alpha_i = 0 \text{ iff } i = 0 \text{ or } i = 2)$

Strange Typical Behaviors



• μ : Bernouilli measure • $\mu_t(u) \stackrel{\text{def}}{=} \mu(F^{-t}([u]))$ • $\chi = t \mapsto t \mod 2$



Strange Typical Behaviors

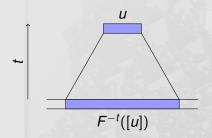
• μ : Bernouilli measure • $\mu_t(u) \stackrel{\text{def}}{=} \mu(F^{-t}([u]))$ • $\chi = t \mapsto t \mod 2$

Proposition

There exist a CA F with:

- 1 $\mu_t(\mathbf{0}) \rightarrow_t \chi$
- **2** $\mu_t(1) \to_t 1 \chi$
- 3 $\mu_t(q) \rightarrow_t 0$ for any $q \notin \{0, 1\}$

Strange Typical Behaviors



• μ : Bernouilli measure • $\mu_t(u) \stackrel{\text{def}}{=} \mu(F^{-t}([u]))$ • $\chi = t \mapsto t \mod 2$

• *u* persistent $\stackrel{def}{\iff} \mu_t(u) \not\rightarrow 0$

Work in progress (with Sablik et al.)

Any transitive regular language can be the persistent language of some CA.

Other results + many details

Directional Dynamics along Arbitrary Curves in Cellular Automata Delacourt, Poupet, Sablik, Theyssier 37p. To appear in TCS.

Future Work

directional expansivity

restriction to surjective CA

what sets of configurations can be a μ-limit-set?

■ what sets of configurations cannot be a µ-limit-set?