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Cellular automata
Definition

I Syntactical object:
Q state set,
V = {v1, . . . , vk} ⊆ Z neighborhood,
f : QV → Q local transition rule

I Associated behavior:
QZ: set of configurations
F : QZ → QZ global transition rule defined by

F (x)z = f
(
xz+v1 , . . . , xz+vk

)



Cellular automata
Examples

Q = {0,1}
V = {−1,0,1}
f = majority among neighbors

Q = {0,1}
V = {−1,0,1}
f (x , y , z) = x + y + z mod 2
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CA as Dynamical Systems

I Cantor distance:
D(x , y)= dist. to center of the 1st cell where x and y differ
Cantor distance: d(x , y) = 2−D(x ,y)

the space of configurations is compact

Theorem (Curtis, Hedlund, Lyndon, 69)

CA global functions are exactly the continuous function which
commute with shift maps.

shift map of vector z: σz(x) = z ′ 7→ xz+z′

intuition: continuity ≡ short-term predictability
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Deterministic Chaos

δ: precision on initial conditions
ε: desired long term precision

Sensitivity to initial conditions:

∃ε,∀x ,∀δ,∃y ,∃n : d(x , y) ≤ δ and d(F n(x),F n(y)) ≥ ε

Equicontinuity point at x :

∀ε,∃δ,∀y : d(x , y) ≤ δ ⇒ ∀n,d(F n(x),F n(y)) ≤ ε
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Deterministic Chaos

δ: precision on initial conditions
ε: desired long term precision

Sensitivity to initial conditions:

∃ε,∀x ,∀δ,∃y , ∃n : d(x , y) ≤ δ and d(F n(x),F n(y)) ≥ ε

Equicontinuity point at x :

∀ε,∃δ,∀y : d(x , y) ≤ δ ⇒ ∀n,d(F n(x),F n(y)) ≤ ε

Eq def
= set of CA having equicontinuity points



Equicontinuity without topology
Consequences C(u) of a word u

C(u)

u? ?

tim
e

[u] =
{

x ∈ QZ : x0 · · · x|u|−1 = u
}

C(u) =
{

(z, t) : ∀x , y ∈ [u],F t (x)z = F t (y)z
}



Equicontinuity without topology
Walls

I F a 1D CA with radius r

Obstacle def
= word with infinite

vertical strip in its consequences

Wall def
= obstacle of width ≥ r

no information can cross a wall
concatenation of walls yields a
larger wall

Theorem (P. Kůrka, 1997)

F ∈ Eq ⇐⇒ F has a wall ⇐⇒ F is almost everywhere
equicontinuous
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Examples: do they have walls?

Q = {0,1}
V = {−1,0,1}
f = majority among neighbors

Q = {0,1}
V = {−1,0,1}
f (x , y , z) = x + y + z mod 2



Examples: do they have walls?

YES Q = {0,1}
V = {−1,0,1}
f = majority among neighbors

Q = {0,1}
V = {−1,0,1}
f (x , y , z) = x + y + z mod 2 NO



Undecidability
The Usual Refrain

Theorem (Durand-Formenti-Varouchas, 2003)

It is undecidable to know whether a given CA has a wall or not.

(I’ve been told a short proof of this using Kari’s undecidability result on nilpotency)

Corollary

There is no computable bound on the size of the smallest wall.

Open problem

Is the set of 1D CA having a wall a Σ2-complete set?



Problem with Shift Invariance

Identity

equicontinuous
long-term predictable

Shift

sensitive
NOT long-term predictable?

Topological dynamics with Cantor metrics not well adapted!
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The Work of M. Sablik (2008)

slo
pe α

space

tim
e

1 for any α, consider the ’sloped’ system: t 7→ σdαte ◦ F t

2 for each fixed α, Kůrka’s results hold
3 study the set of slopes α showing a given behavior

Example of Theorem

For any given CA, the set of slopes with equicontinuity points is
an interval of reals.



Generalization

Walls along arbitrary curves

u

tim
e

theory still works (wall↔ equicontinuity) but...

useful definition? do ’non-linear walls’ exist?

this talk: YES + other strange behaviors
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The Key Construction
Outline

t Θ(t) Θ(t)
tim

e
protected

area

Valid zone def
=

1 only a valid zone can erase a valid zone
2 after t steps, the age of any valid zone is at least t
3 when two valid zones meet, the older is destroyed



The Key Construction
Evil Twins

u0

varying part

fixed part

u0
def
= protected zone of age 0

Principle

If the construction can merge with itself then C(u0) is exactly
the fixed part of the construction.
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The Key Construction
Details



Result 1
Parabolic Consequences

Theorem

There exists a CA having a wall along a parabolic curve, but
without any wall along any linear direction.

Main ideas
two constructions
intersection via Cartesian product
protected zones
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Result 1
2 pictures about the proof



Result 2
Characterization of linear slopes

Definition

A real α is computably enumerable (c.e.) if there is a
computable sequence of rationals converging to it.

left c.e. if the sequence is increasing
right c.e. if the sequence is decreasing

Theorem

[α, β] is the set of slope of equicontinuity for some CA
iff α is lce and β is rce.
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Result 2
1 picture about the proof

α =
∑

i

αi

2i (here: αi = 0 iff i = 0 or i = 2)



Result 3
Strange Typical Behaviors

u
t

F−t ([u])

µ: Bernouilli measure

µt (u)
def
= µ

(
F−t ([u])

)
χ = t 7→ t mod 2
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Strange Typical Behaviors

u
t

F−t ([u])

µ: Bernouilli measure

µt (u)
def
= µ

(
F−t ([u])

)
χ = t 7→ t mod 2

Proposition

There exist a CA F with:
1 µt (0)→t χ

2 µt (1)→t 1− χ
3 µt (q)→t 0 for any q 6∈ {0,1}



Result 3
Strange Typical Behaviors

u
t

F−t ([u])

µ: Bernouilli measure

µt (u)
def
= µ

(
F−t ([u])

)
χ = t 7→ t mod 2

u persistent def⇐⇒ µt (u) 6→ 0

Work in progress (with Sablik et al.)

Any transitive regular language can be the persistent language
of some CA.



Other results + many details

Directional Dynamics along Arbitrary
Curves in Cellular Automata
Delacourt, Poupet, Sablik, Theyssier
37p. To appear in TCS.



Future Work

directional expansivity

restriction to surjective CA

what sets of configurations can be a µ-limit-set?

what sets of configurations cannot be a µ-limit-set?
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