On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures MFCS 2006

L. Boyer¹ V. Poupet¹ G. Theyssier²

1. LIP (CNRS, ENS Lyon, UCB Lyon, INRIA,), France

2. LAMA, (CNRS, Université de Savoie), France

August 28, 2006

a lattice of cells (in this talk: ℤ)

_							

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood
- same neighbourhood and same updating rule for all cells

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood
- same neighbourhood and same updating rule for all cells

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood
- same neighbourhood and same updating rule for all cells
- global behaviour: synchronous update at each discrete time

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood
- same neighbourhood and same updating rule for all cells
- global behaviour: synchronous update at each discrete time

- a lattice of cells (in this talk: ℤ)
- each cell has a state among a finite set
- cells update their state by looking at a finite neighbourhood
- same neighbourhood and same updating rule for all cells
- global behaviour: synchronous update at each discrete time

- ▶ given: *A*, local description of a CA
 - lattice \mathbb{Z}
 - states set Σ
 - size of neighbourhood k
 - local updating rule $\delta_{\mathcal{A}}: \Sigma^k \to \Sigma$

- ▶ given: , local description of a CA
 - Iattice Z
 - states set Σ
 - size of neighbourhood k
 - local updating rule $\delta_{\mathcal{A}}: \Sigma^k \to \Sigma$

▶ induced: G_A , global mapping from configurations to configurations

definition: a configuration c is a mapping from cells to states ($c : \mathbb{Z} \to \Sigma$)

- ▶ given: *A*, local description of a CA
 - Iattice Z
 - states set Σ
 - size of neighbourhood k
 - local updating rule $\delta_{\mathcal{A}}: \Sigma^k \to \Sigma$

▶ induced: G_A , global mapping from configurations to configurations

definition: a configuration c is a mapping from cells to states ($c : \mathbb{Z} \to \Sigma$)

Main question

Knowing \mathcal{A} , what is the long term behaviour of $G_{\mathcal{A}}$?

< 同 > < ∃ >

• "configurations that may appear arbitrarily late in the evolution"

4 A N

- E - N

configurations that may appear arbitrarily late in the evolution"
Ω_A is defined by:

$$oldsymbol{c}\in \Omega_{\mathcal{A}} \ \stackrel{ ext{def}}{\Longleftrightarrow} \ orall t, \exists oldsymbol{c}_0: oldsymbol{G}_{\mathcal{A}}{}^t(oldsymbol{c}_0) = oldsymbol{c}$$

< 🗇 🕨 < 🖃 🕨

"configurations that may appear arbitrarily late in the evolution"
Ω_A is defined by:

$$c\in \Omega_{\mathcal{A}} \stackrel{\mathsf{def}}{\iff} orall t, \exists c_0: G_{\mathcal{A}}{}^t(c_0)=c$$

•
$$\mathcal{A}$$
 is nilpotent $\stackrel{\text{def}}{\iff} \Omega_{\mathcal{A}}$ is a singleton.

Theorems (J. Kari, 90s)

- Nilpotency is undecidable.
- 2 Any property of limit sets is either trivial or undecidable.

< 🗇 🕨 < 🖃 >

"configurations that may appear arbitrarily late in the evolution"
Ω_A is defined by:

$$oldsymbol{c}\in oldsymbol{\Omega}_{\mathcal{A}} \ \stackrel{ ext{def}}{\Longleftrightarrow} \ orall t, \exists oldsymbol{c}_0: oldsymbol{G}_{\mathcal{A}}{}^t(oldsymbol{c}_0)=oldsymbol{c}$$

•
$$\mathcal{A}$$
 is nilpotent $\stackrel{\text{def}}{\longleftrightarrow} \Omega_{\mathcal{A}}$ is a singleton.

Theorems (J. Kari, 90s)

- Nilpotency is undecidable.
- 2 Any property of limit sets is either trivial or undecidable.

set-theoretic point of view

• complexity of Ω_A can come from a negligible set of configurations

• "typical configurations that appear arbitrarily late in the evolution"

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

Definitions

• $[u] \stackrel{\text{def}}{=} \{ \text{configurations with } u \text{ as factor around the center cell} \}$

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

Definitions

[u] ^{def} = {configurations with u as factor around the center cell}
 μ_t(u) ^{def} = μ({c : G^t_A(c) ∈ [u]})

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

Definitions

[u] ^{def} = {configurations with u as factor around the center cell}
μ_t(u) ^{def} ∑_i μ([v_i]) where ∪_i[v_i] = {c : G^t_A(c) ∈ [u]}

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

Definitions

- "typical configurations that appear arbitrarily late in the evolution"
- fix a measure μ over $\Sigma^{\mathbb{Z}}$ (in this talk: a Bernouilli measure)

Definitions

•
$$\delta_{\mathcal{A}}(x, y, z) = \max(x, y, z)$$

•
$$\delta_{\mathcal{A}}(x, y, z) = \max(x, y, z)$$

- ▶ Properties of *A*:
 - $\Omega_{\mathcal{A}} = \{ \text{decreasing then increasing configurations} \} ())$

•
$$\delta_{\mathcal{A}}(x, y, z) = \max(x, y, z)$$

▶ Properties of *A*:

- $\Omega_{\mathcal{A}} = \{ \text{decreasing then increasing configurations} \} ())$
- $\Upsilon_{\mu}(\mathcal{A}) = \{ \omega \blacksquare \omega \}$ for any (complete) Bernouilli measure μ

•
$$\delta_{\mathcal{A}}(x, y, z) = \max(x, y, z)$$

▶ Properties of *A*:

- $\Omega_{\mathcal{A}} = \{ \text{decreasing then increasing configurations} \}$
- $\Upsilon_{\mu}(\mathcal{A}) = \{ \omega \blacksquare \omega \}$ for any (complete) Bernouilli measure μ
- **Definition:** a CA is μ -quasi-nilpotent if its μ -limit set is a singleton

•
$$\delta_{\mathcal{A}}(x, y, z) = \max(x, y, z)$$

▶ Properties of *A*:

- $\Omega_{\mathcal{A}} = \{ \text{decreasing then increasing configurations} \} ())$
- $\Upsilon_{\mu}(\mathcal{A}) = \{ \omega \blacksquare \omega \}$ for any (complete) Bernouilli measure μ
- **Definition:** a CA is μ -quasi-nilpotent if its μ -limit set is a singleton
- ▶ Limit sets vs. µ-limit sets:
 - there is a μ -quasi-nilpotent CA with a non recursive limit set
 - it is undecidable to know whether a μ-quasi-nilpotent CA is nilpotent

Definitions (walls and bricks)

• A wall is a sequence $W = (u_i)$ of words such that :

 $|u_0| \ge |u_1| = |u_2| = \cdots$

A (10) > A (10) > A (10)

Definitions (walls and bricks)

• A wall is a sequence $W = (u_i)$ of words such that :

$$egin{array}{l} |u_0|\geq |u_1|=|u_2|=\cdots \ |u_0|,orall t:G^t_{\mathcal{A}}(m{c})\in [u_0],orall t:G^t_{\mathcal{A}}(m{c})\in [u_0] \end{array}$$

Definitions (walls and bricks)

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|c|} |u_0| \geq |u_1| = |u_2| = \cdots \\ |u_0|, \forall t : G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

• This definition implies that W is ultimately periodic.

Definitions (walls and bricks)

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|} |u_0| \geq |u_1| = |u_2| = \cdots \\ |u_0|, \forall t : G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

- This definition implies that W is ultimately periodic.
- A brick of W is any word u_n in the period.

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|c|} \hline & |u_0| \geq |u_1| = |u_2| = \cdots \\ \hline & \forall c \in [u_0], \forall t: G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

- This definition implies that W is ultimately periodic.
- A brick of W is any word u_n in the period.

Theorem (Bricks theorem)

If A is a CA with neighbourhood size k and having a brick of size $\geq k$ then $L_{\mu}(A) = \{ bricks of A \}.$

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|c|} \hline & |u_0| \geq |u_1| = |u_2| = \cdots \\ \hline & \forall c \in [u_0], \forall t : G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

- This definition implies that W is ultimately periodic.
- A brick of W is any word u_n in the period.

Theorem (Bricks theorem)

If A is a CA with neighbourhood size k and having a brick of size $\geq k$ then $L_{\mu}(A) = \{ bricks of A \}.$

► Corollary:

• μ -limit sets of such CA do not depend on μ (within Bernouilli μ).

< 4 →

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|c|} \hline & |u_0| \geq |u_1| = |u_2| = \cdots \\ \hline & \forall c \in [u_0], \forall t : G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

- This definition implies that W is ultimately periodic.
- A brick of W is any word u_n in the period.

Theorem (Bricks theorem)

If A is a CA with neighbourhood size k and having a brick of size $\geq k$ then $L_{\mu}(A) = \{ bricks of A \}.$

► Corollary:

- μ -limit sets of such CA do not depend on μ (within Bernouilli μ).
- **Known fact:** no brick of size $\geq k \iff$ sensitive to initial conditions

• A wall is a sequence $W = (u_i)$ of words such that :

$$\begin{array}{|c|c|c|} \hline & |u_0| \geq |u_1| = |u_2| = \cdots \\ \hline & \forall c \in [u_0], \forall t : G^t_{\mathcal{A}}(c) \in [u_t] \end{array}$$

- This definition implies that W is ultimately periodic.
- A brick of W is any word u_n in the period.

Theorem (Bricks theorem)

If A is a CA with neighbourhood size k and having a brick of size $\geq k$ then $L_{\mu}(A) = \{ bricks of A \}.$

► Corollary:

- μ -limit sets of such CA do not depend on μ (within Bernouilli μ).
- **Known fact:** no brick of size $\geq k \iff$ sensitive to initial conditions
- ▶ Bricks theorem true for sensitive CA?

Example 2: the 'Just Glider' automaton

Definition:

- states move right at full speed in a background
- states move left at full speed in a background
- when and meet they disappear

Example 2: the 'Just Glider' automaton

► Definition:

- states move right at full speed in a background
- states move left at full speed in a background
- when and meet they disappear

► Properties:

- $\Omega_A = \{ \text{configurations without any} = 0 \text{ on the left of a } \}$
- 2 $\mu(\blacksquare) = \mu(\blacksquare) \iff \mathcal{A}$ is μ -quasi-nilpotent

æ

▶ 4 evidences of high complexity:

Theorem (Not r.e.)

The set of μ -quasi-nilpotent CA is not recursively enumerable.

< 同 > < ∃ >

▶ 4 evidences of high complexity:

Theorem (Not r.e.)

The set of μ -quasi-nilpotent CA is not recursively enumerable.

Theorem (Not co-r.e.)

The set of μ -quasi-nilpotent CA is not co-recursively enumerable.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ 4 evidences of high complexity:

Theorem (Not r.e.)

The set of μ -quasi-nilpotent CA is not recursively enumerable.

Theorem (Not co-r.e.)

The set of μ -quasi-nilpotent CA is not co-recursively enumerable.

Theorem

It is undecidable to know whether a given word is persistent for a given CA.

▶ 4 evidences of high complexity:

Theorem (Not r.e.)

The set of μ -quasi-nilpotent CA is not recursively enumerable.

Theorem (Not co-r.e.)

The set of μ -quasi-nilpotent CA is not co-recursively enumerable.

Theorem

It is undecidable to know whether a given word is persistent for a given CA.

Theorem

There is a CA with a non recursive persistent language.

э

Proof sketch of theorem "Not r.e."

► Basic idea:

- For any Turing machine M, we construct a CA A such that:
 - A simulates M
 - A has an inalterable state '#'
 - If the set of bricks of A is $\#^*$.

Proof sketch of theorem "Not r.e."

► Basic idea:

- For any Turing machine M, we construct a CA A such that:
 - \mathcal{A} simulates M
 - 2 \mathcal{A} has an inalterable state '#'
 - M doesn't halt on the empty input iff the set of bricks of A is #*.
- The bricks theorem concludes the proof

Proof sketch of theorem "Not r.e."

► Basic idea:

- For any Turing machine M, we construct a CA A such that:
 - \mathcal{A} simulates M
 - A has an inalterable state '#'
 - M doesn't halt on the empty input iff the set of bricks of A is #*.
- The bricks theorem concludes the proof

Simulation mechanism:

- correct simulations occur on segments delimited by two '#'
- e simulation for a limited duration
- a final state restart the simulation on the same segment
- the segment is destroyed (turn into #s) when:
 - the simulation time is over
 - an incorrect encoding is detected

4 3 > 4 3

• start: sufficiently large segment

2

(a)

- start: sufficiently large segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.

< 17 ▶

- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- a final state appears: it turns into *F* which moves left

A .

If M halts...

- start: sufficiently large segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- a final state appears: it turns into *F* which moves left
- *F* reaches the left #: it turns into *R* which moves right to restart the computation and destroy the *L* signals.

If M halts...

- start: sufficiently large segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- a final state appears: it turns into *F* which moves left
- *F* reaches the left #: it turns into *R* which moves right to restart the computation and destroy the *L* signals.

4 A N

• R reaches the right #: destroyed.

If M halts...

- start: sufficiently large segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- a final state appears: it turns into *F* which moves left
- *F* reaches the left #: it turns into *R* which moves right to restart the computation and destroy the *L* signals.
- R reaches the right #: destroyed.
- From now on, the behavior is periodic

< 6 b

< ∃ >

- start: sufficiently large segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- a final state appears: it turns into *F* which moves left
- *F* reaches the left #: it turns into *R* which moves right to restart the computation and destroy the *L* signals.
- R reaches the right #: destroyed.
- From now on, the behavior is periodic

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

this gives a wall with a brick not in #*

• start: any empty segment

# -0			4
# 90			#

æ

- start: any empty segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.

4 A N

< ∃ ►

#				q	L		L		#
#			q			L	L		#
#		q					L	L	#
#			q					L	#
#		q						L	#
#	q0								#

#	L	L	L	L	L	L	L	L	L	#
#		L	L	L	L	L	L	L	L	#
#			L	L	L	L	L	L	L	#
#				L	L	L	L	L	L	#
#				q	L	L	L	L	L	#
#			q			L	L	L	L	#
#		q					L	L	L	#
#			q					L	L	#
#		q							L	#
#	q0									#

- start: any empty segment
- during simulation: a *L* is generated permanently on the rightmost cell and moves left.
- *L* reaches the simulation head: the head is erased.

If *M* doesn't halt...

#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	D	#
#	#	#	#	#	#	#	#	D	L	#
#	#	#	#	#	#	#	D	L	L	#
#	#	#	#	#	#	D	L	L	L	#
#	#	#	#	#	D	L	L	L	L	#
#	#	#	#	D	L	L	ι	L	L	#
#	#	#	D	L	L	L	L	L	L	#
#	#	D	L	L	L	L	L	L	L	#
#	D	L	L	L	L	L	L	L	L	#
#	L	L	L	L	L	L	L	L	L	#
#		L	L	ι	L	L	ι	L	L	#
#			L	L	L	L	L	L		#
#				L	L	L	L	L	L	#
#				q	L	L	L	L	L	#
#			q			L	L	L	L	#
#		q					ι	L	L	#
#			q					L	L	#
#		q							L	#
#	q0									#

- start: any empty segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- *L* reaches the simulation head: the head is erased.
- *L* reaches the right #: it turns into *D* which moves right to turn everything into #.

A (1) > A (2) > A

If *M* doesn't halt...

#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	#	#
#	#	#	#	#	#	#	#	#	D	#
#	#	#	#	#	#	#	#	D	L	#
#	#	#	#	#	#	#	D	1		#
#	#	#	#	#	#	D	-	_		#
#	#	#	#	#	D		-	1		#
#	#	#	#	D	L		L	L		#
#	#	#	D	L	L	L	L	L	L	#
#	#	D		1	1		1	1		#
#	n	-			_		1	_		#
#	1	1	Ĩ	1	1	Ĩ	-	-		#
#		_	Ĩ		_	Ĩ	-	_		#
#		_		1	1		1	1	1	#
#				1	1		1	1		#
#				q	L		L	L		#
#			q			L	L	L	L	#
#		q					L	L		#
#			q					L	L	#
#		q								#
#	q0									#

- start: any empty segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- *L* reaches the simulation head: the head is erased.
- *L* reaches the right #: it turns into *D* which moves right to turn everything into #.
- similar mechanism for non-empty segments (details skipped)

If *M* doesn't halt...

- start: any empty segment
- **during simulation:** a *L* is generated permanently on the rightmost cell and moves left.
- *L* reaches the simulation head: the head is erased.
- *L* reaches the right #: it turns into *D* which moves right to turn everything into #.

 similar mechanism for non-empty segments (details skipped)

About proofs of the other theorems

Theorem (Not co-r.e.)

The set of μ -quasi-nilpotent CA is not co-recursively enumerable.

Theorem

It is undecidable to know whether a given word is persistent for a given CA.

Theorem

There is a CA with a non recursive persistent language.

- similar ingredients
- "Not co-r.e." is more tricky (details in article)
- results true in higher dimension
- proofs may be adapted for a fixed states set

- is there a Rice theorem for μ -limit sets?
- ► knowing more about the sequences $(\mu_t(u))$
 - oscillations?
 - convergence?
- are μ -limit sets of \mathcal{A} and \mathcal{A}^t the same?
- cases of equality between limit set and µ-limit set?
 equality holds for surjective CA
- interesting sub-classes of CA where μ -limit sets are tractable?
- ► generalising to a broader class of measures (e.g. Markov measures)

4 3 > 4 3

< 17 ▶