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Cellular Automata

a lattice of cells (in this talk: Z)

each cell has a state among a finite set
cells update their state by looking at a finite neighbourhood
same neighbourhood and same updating rule for all cells
global behaviour: synchronous update at each discrete time
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Cellular Automata

I given: A, local description of a CA

lattice Z

states set Σ

size of neighbourhood k

local updating rule δA : Σk → Σ

I induced: GA, global mapping from configurations to configurations

definition: a configuration c is a mapping from
cells to states (c : Z→ Σ)

Main question
Knowing A, what is the long term behaviour of GA?
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Classical tool: limit sets

“configurations that may appear arbitrarily late in the evolution”

ΩA is defined by:

c ∈ ΩA
def⇐⇒ ∀t ,∃c0 : GA

t(c0) = c

A is nilpotent def⇐⇒ ΩA is a singleton.

Theorems (J. Kari, 90s)
1 Nilpotency is undecidable.
2 Any property of limit sets is either trivial or undecidable.

set-theoretic point of view
complexity of ΩA can come from a negligible set of configurations

L. Boyer, V. Poupet, G. Theyssier (France) On the Complexity of µ-limsets of CA August 28, 2006 4 / 14



Classical tool: limit sets

“configurations that may appear arbitrarily late in the evolution”
ΩA is defined by:

c ∈ ΩA
def⇐⇒ ∀t ,∃c0 : GA

t(c0) = c

A is nilpotent def⇐⇒ ΩA is a singleton.

Theorems (J. Kari, 90s)
1 Nilpotency is undecidable.
2 Any property of limit sets is either trivial or undecidable.

set-theoretic point of view
complexity of ΩA can come from a negligible set of configurations

L. Boyer, V. Poupet, G. Theyssier (France) On the Complexity of µ-limsets of CA August 28, 2006 4 / 14



Classical tool: limit sets

“configurations that may appear arbitrarily late in the evolution”
ΩA is defined by:

c ∈ ΩA
def⇐⇒ ∀t ,∃c0 : GA

t(c0) = c

A is nilpotent def⇐⇒ ΩA is a singleton.

Theorems (J. Kari, 90s)
1 Nilpotency is undecidable.
2 Any property of limit sets is either trivial or undecidable.

set-theoretic point of view
complexity of ΩA can come from a negligible set of configurations

L. Boyer, V. Poupet, G. Theyssier (France) On the Complexity of µ-limsets of CA August 28, 2006 4 / 14



Classical tool: limit sets

“configurations that may appear arbitrarily late in the evolution”
ΩA is defined by:

c ∈ ΩA
def⇐⇒ ∀t ,∃c0 : GA

t(c0) = c

A is nilpotent def⇐⇒ ΩA is a singleton.

Theorems (J. Kari, 90s)
1 Nilpotency is undecidable.
2 Any property of limit sets is either trivial or undecidable.

set-theoretic point of view
complexity of ΩA can come from a negligible set of configurations

L. Boyer, V. Poupet, G. Theyssier (France) On the Complexity of µ-limsets of CA August 28, 2006 4 / 14



Recent tool: µ-limit sets (P. Kůrka, A. Maass, 2000)

“typical configurations that appear arbitrarily late in the evolution”

fix a measure µ over ΣZ (in this talk: a Bernouilli measure)

Definitions

[u]
def
=

{
configurations with u as factor around the center cell

}
µt(u)

def
=

u ∈ Lµ(A)
def⇐⇒ µt(u) 6→ 0 as t →∞

c ∈ Υµ(A)
def⇐⇒ all finite factors of c are in Lµ(A)

u? ?
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“typical configurations that appear arbitrarily late in the evolution”
fix a measure µ over ΣZ (in this talk: a Bernouilli measure)

Definitions

[u]
def
=

{
configurations with u as factor around the center cell

}
µt(u)

def
=

u ∈ Lµ(A)
def⇐⇒ µt(u) 6→ 0 as t →∞

c ∈ Υµ(A)
def⇐⇒ all finite factors of c are in Lµ(A)

u? ?

L. Boyer, V. Poupet, G. Theyssier (France) On the Complexity of µ-limsets of CA August 28, 2006 5 / 14



Recent tool: µ-limit sets (P. Kůrka, A. Maass, 2000)
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Example 1: the ’max’ automaton

Σ = { , , , }
< < <

δA(x , y , z) = max(x , y , z)

I Properties of A:
ΩA =

{
decreasing then increasing configurations

}
(↘↗)

Υµ(A) =
{

ω ω
}

for any (complete) Bernouilli measure µ

I Definition: a CA is µ-quasi-nilpotent if its µ-limit set is a singleton

I Limit sets vs. µ-limit sets:
there is a µ-quasi-nilpotent CA with a non recursive limit set
it is undecidable to know whether a µ-quasi-nilpotent CA is
nilpotent
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A partial characterisation

Definitions (walls and bricks)
A wall is a sequence W = (ui) of words such that :

1 |u0| ≥ |u1| = |u2| = · · ·

2 ∀c ∈ [u0],∀t : Gt
A(c) ∈ [ut ]

This definition implies that W is ultimately periodic.
A brick of W is any word un in the period.

un

u2
u1
u0

...

...
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This definition implies that W is ultimately periodic.
A brick of W is any word un in the period.

Theorem (Bricks theorem)
If A is a CA with neighbourhood size k and having a brick of size ≥ k
then Lµ(A) =

{
bricks of A

}
.

I Corollary:
µ-limit sets of such CA do not depend on µ (within Bernouilli µ).

I Known fact: no brick of size ≥ k ⇐⇒ sensitive to initial conditions
I Bricks theorem true for sensitive CA?
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Example 2: the ’Just Glider’ automaton

I Definition:
states move right at full speed in a background
states move left at full speed in a background

when and meet they disappear

I Properties:
1 ΩA =

{
configurations without any on the left of a

}
2 µ( ) = µ( ) ⇐⇒ A is µ-quasi-nilpotent
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Complexity of µ-limit sets?

I 4 evidences of high complexity:

Theorem (Not r.e.)
The set of µ-quasi-nilpotent CA is not recursively enumerable.

Theorem (Not co-r.e.)
The set of µ-quasi-nilpotent CA is not co-recursively enumerable.

Theorem
It is undecidable to know whether a given word is persistent for a given
CA.

Theorem
There is a CA with a non recursive persistent language.
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Proof sketch of theorem “Not r.e.”

I Basic idea:
For any Turing machine M, we construct a CA A such that:

1 A simulates M
2 A has an inalterable state ’#’
3 M doesn’t halt on the empty input iff the set of bricks of A is #∗.

The bricks theorem concludes the proof

I Simulation mechanism:
1 correct simulations occur on segments delimited by two ’#’
2 simulation for a limited duration
3 a final state restart the simulation on the same segment
4 the segment is destroyed (turn into #s) when:

the simulation time is over
an incorrect encoding is detected
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an incorrect encoding is detected
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If M halts...

start: sufficiently large segment

during simulation: a L is generated
permanently on the rightmost cell and
moves left.

a final state appears: it turns into F
which moves left

F reaches the left #: it turns into R
which moves right to restart the
computation and destroy the L signals.

R reaches the right #: destroyed.

From now on, the behavior is periodic

I this gives a wall with a brick not in #∗
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If M doesn’t halt...

start: any empty segment

during simulation: a L is generated
permanently on the rightmost cell and
moves left.

L reaches the simulation head: the
head is erased.

L reaches the right #: it turns into D
which moves right to turn everything
into #.

similar mechanism for non-empty
segments (details skipped)

I no other brick than #∗
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About proofs of the other theorems

Theorem (Not co-r.e.)
The set of µ-quasi-nilpotent CA is not co-recursively enumerable.

Theorem
It is undecidable to know whether a given word is persistent for a given CA.

Theorem
There is a CA with a non recursive persistent language.

similar ingredients
“Not co-r.e.” is more tricky (details in article)

results true in higher dimension
proofs may be adapted for a fixed states set
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Future work

I is there a Rice theorem for µ-limit sets?

I knowing more about the sequences
(
µt(u)

)
oscillations?
convergence?

I are µ-limit sets of A and At the same?

I cases of equality between limit set and µ-limit set?
equality holds for surjective CA

I interesting sub-classes of CA where µ-limit sets are tractable?

I generalising to a broader class of measures (e.g. Markov measures)
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