Subshifts and MSO Logic FRAC d'hiver 2009 — Institut Gaspard-Monge

Guillaume Theyssier, joint work with Emmanuel Jeandel

LAMA (CNRS, Université de Savoie)

March 6th, 2009

Overview

Two worlds:

symbolic spaces: words, tilings, subshifts, etc
 MSO logic

Two kinds of results:

- 1 logic characterisation of some families of subshifts
- 2 'combinatorial' characterisation of some classes of formulas

Focus of this talk:

how classical results on words and pictures extend to sofic subshifts

General Setting

Symbolic space

- a regular domain D
- a finite alphabet Q
- objects are configurations i.e. mappings D → Q

MSO logic

- FO variables: positions in D
- SO variables: subsets of D
- unary functions: elementary displacements in D
- unary predicates: colouring

$\exists X, \forall z, \\ P_{-}(z) \implies X(\mathsf{East}(z))$

Model Theoretical Approach

Formulas and models

- an object $\mathcal{M}: D
 ightarrow Q$
- \blacksquare an MSO formula ϕ
- \mathcal{M} models ϕ if [...usual def...]

Definability and equivalence

- ϕ defines the set of its models
- $\blacksquare \ \psi$ and ϕ are equivalent if they define the same sets

MSO fragments

- EMSO $\stackrel{def}{=}$ formulas of the form $\exists X \phi(X)$ where ϕ has only FO quantifiers
- **•** SO quantifier alternation hierarchy: $\Sigma_1^{SO} = EMSO$
- Within EMSO, FO quantifier alternation hierarchy

First Order: Locality and Thresholds

Threshold counting of finite patterns

- P: finite pattern
- k: threshold
- $S_{=k}(P) \stackrel{def}{=}$ configurations with **exactly** k occurrences of P
- $S_{\geq k}(P) \stackrel{\text{def}}{=}$ configurations with **at least** k occurrences of P

First Order: Locality and Thresholds

Threshold counting of finite patterns

- P: finite pattern
- k: threshold
- $S_{=k}(P) \stackrel{def}{=}$ configurations with **exactly** k occurrences of P
- $S_{\geq k}(P) \stackrel{\text{def}}{=}$ configurations with **at least** k occurrences of P

Theorem

Every FO definable set is a positive combination (unions and intersections) of sets of type $S_{=k}(P)$ or $S_{\geq k}(P)$.

Idea: Hanf locality lemma adapted to this setting

Classical results

Dimension 1: words

Th. (Büchi 60, Elgot 61): a language is regular iff it is MSO definable.

Th. (Thomas 82): over words, every MSO sentence is equivalent to a 1-EMSO sentence.

Key idea: finite automata and their closure properties

Classical results

Dimension 1: words

Th. (Büchi 60, Elgot 61): a language is regular iff it is MSO definable.

Th. (Thomas 82): over words, every MSO sentence is equivalent to a 1-EMSO sentence.

Key idea: finite automata and their closure properties

Dimension 2: finite pictures

Th. (Giammarresi et al. 94): a picture language is recognizable iff it is EMSO definable.

Th. (Matz, Thomas 97): the SO alternation hierarchy over pictures is infinite.

Recognizable? Picture?

Focus on Pictures

Pictures:

• new alphabet: $Q \cup \{\#\}$

• picture $\stackrel{def}{=}$ rectangular *Q*-pattern surrounded by # states

Focus on Pictures

Pictures:

• new alphabet: $Q \cup \{\#\}$

• picture $\stackrel{def}{=}$ rectangular *Q*-pattern surrounded by # states

2D recognizability:

- **1 tiling recognizable** $\stackrel{def}{=}$ generated by some 2 × 2 finite type constraints
- **2** recognizable $\stackrel{def}{=}$ projection of the above

Focus on Pictures

Pictures:

• new alphabet: $Q \cup \{\#\}$

• picture $\stackrel{def}{=}$ rectangular *Q*-pattern surrounded by # states

2D recognizability:

- **1 tiling recognizable** $\stackrel{def}{=}$ generated by some 2 × 2 finite type constraints
- **2** recognizable $\stackrel{def}{=}$ projection of the above

Detection of # borders is allowed in tiling recognizability!

Symbolic spaces and subshifts

Setting of this talk:

- domain: $D = \mathbb{Z}^2$
- configurations: $\mathbb{Z}^2 \to Q$
- language: set of finite patterns
- subshift: set of configurations avoiding some language
- subshift of finite type (SFT): subshift defined by a finite forbidden language
- sofic subshift: projection of a SFT

Symbolic spaces and subshifts

Setting of this talk:

- domain: $D = \mathbb{Z}^2$
- configurations: $\mathbb{Z}^2 \to Q$
- language: set of finite patterns
- subshift: set of configurations avoiding some language
- subshift of finite type (SFT): subshift defined by a finite forbidden language
- sofic subshift: projection of a SFT

Subshifts and MSO logic

- formulas always define shift-invariant sets
- formulas don't always define a closed set

Separation / Collapse

Separation

Theorem

There exists a EMSO definable subshift which is not sofic.

• Σ_n^{SO} -defined subshift with Π_n -complete forbidden language

Separation / Collapse

Separation

Theorem

There exists a EMSO definable subshift which is not sofic.

• Σ_n^{SO} -defined subshift with Π_n -complete forbidden language Collapse at FO level 2 within EMSO

Theorem

Every EMSO-definable set can be defined by a formula of the form:

$$\exists \overline{X}, (\forall \overline{y}, \phi(\overline{y}, \overline{X})) \land (\exists \overline{z}, \psi(\overline{z}, \overline{X})),$$

where ϕ and ψ are quantifier-free.

• the uple \overline{y} can always be chosen of size 2

proof idea: threshold counting theorem + technical stuff

SFT and sofic subshifts

Theorem

A set of configurations is an SFT iff it can be defined by:

 $\forall z, \phi(z)$, where ϕ is quantifier-free.

easy proof

SFT not closed by union or complementation

SFT and sofic subshifts

Theorem

A set of configurations is an SFT iff it can be defined by:

 $\forall z, \phi(z)$, where ϕ is quantifier-free.

easy proof

SFT not closed by union or complementation

Theorem

A set of configurations is a sofic subshift iff it can be defined by:

 $\exists \overline{X}, \forall \overline{z}, \phi(\overline{X}, \overline{z}), \text{ where } \phi \text{ is quantifier-free.}$

more technical proof

remark: such formulas always define closed sets

'Symbolic' characterisation of EMSO

The problem

- sofic subshifts fail to capture all EMSO
- it's not a finite/infinite problem but a uniformity problem
- pictures use a # border
- what is really needed?

'Symbolic' characterisation of EMSO

The problem

- sofic subshifts fail to capture all EMSO
- it's not a finite/infinite problem but a uniformity problem
- pictures use a # border
- what is really needed?

Breaking uniformity

- fix $Q_0, Q_1 \subseteq Q$ and let C be a Q-configuration
- C is (Q_0, Q_1) -marked $\stackrel{def}{=} \exists z_0, z_1 \ C(z_0) \in Q_0$ and $C(z_1) \in Q_1$
- doubly-marked set of finite type ^{def} = set of configurations of a SFT which are (Q₀, Q₁)-marked

'Symbolic' characterisation of EMSO

Theorem

A set is EMSO-definable **iff** it is the projection of a doubly-marked set of finite type.

Proof idea:

- threshold counting restricted to a finite zone can be done with DMSFT
- 2 show that DMSFT are close by union and intersections
- Remark: '#' at SW and NE corners of pictures gives a double marking
- This is true in any dimension (not written, but...)

Open problems

Largest 'sofic' logic fragment

we have that

 $\exists \overline{X}, \forall \overline{Y}, \forall \overline{z}, \phi(\overline{X}, \overline{Y}, \overline{z}), \text{ where } \phi \text{ is quantifier-free,}$ always defines a sofic subshift.

- how far can we go in SO alternation with sofic subshifts?
- is the whole *SO-∀FO fragment sofic?

Infinite alternation hierarchy?

- is the SO alternation hierarchy strict?
- strict for subshifts?
- use complexity of forbidden language?