On the complexity of freezing automata networks of bounded pathwidth

Eric Goles, Pedro Montealegre, Martín Ríos-Wilson, G. Theyssier

CNRS, AMU, Institut de Mathématiques de Marseille
AUTOMATA 2023

Freezing cellular automata

■ global map $F: Q^{\mathbb{Z}^{d}} \rightarrow Q^{\mathbb{Z}^{d}}$
■ Q endowed with some order \leq
■ freezing property: $\forall c \in Q^{\mathbb{Z}^{d}}, \forall z \in \mathbb{Z}^{d}: F(c)_{z} \leq c_{z}$

Freezing cellular automata

■ global map $F: Q^{\mathbb{Z}^{d}} \rightarrow Q^{\mathbb{Z}^{d}}$
■ Q endowed with some order \leq
■ freezing property: $\forall c \in Q^{\mathbb{Z}^{d}}, \forall z \in \mathbb{Z}^{d}: F(c)_{z} \leq c_{z}$

Ulam's rule 1

Bootstrap percolation

Life without death

Complexity of freezing CA

Theorem (Ollinger-Theyssier,2021)

	1D freezing CA	2D freezing CA
nilpotency	decidable	undecidable
prediction	NL	P-complete
trace	undecidable	undecidable

Complexity of freezing CA

Theorem (Ollinger-Theyssier,2021)

	1D freezing CA	2D freezing CA
nilpotency	decidable	undecidable
prediction	NL	P-complete
trace	undecidable	undecidable

■ nilpotency: all orbits converge to the same fixed point
■ prediction problem: given finite init. conf. and time t what is the value of cell 0 at time t ?
■ trace problem: given finite patterns u and v, is there an orbit from $[u]$ to $[v]$?

$$
[u]=\left\{c \in Q^{\mathbb{Z}^{d}}: c_{\mid D}=u\right\} \text { where } u: D \subseteq \mathbb{Z}^{d} \rightarrow Q
$$

- Blondel-Delevenne-Kůrka's universality in dynamical systems

Freezing automata networks

- $G=(V, E)$ a graph
- local maps: $\delta_{v}: Q^{N-(v)} \rightarrow Q /$ global map: $F: Q^{V} \rightarrow Q^{V}$
- Q endowed with some order \leq

■ freezing property: $\forall c \in Q^{V}, \forall v \in V: F(c)_{v} \leq c_{V}$

Freezing automata networks

■ $G=(V, E)$ a graph

- local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q /$ global map: $F: Q^{V} \rightarrow Q^{V}$
- Q endowed with some order \leq
- freezing property: $\forall c \in Q^{V}, \forall v \in V: F(c)_{v} \leq c_{V}$

Theorem (Goles-Montealegre-Rios-Theyssier, 2021)

- freezing AN of bounded degree and bounded treewidth have a NC trace specification problem
- hardness results otherwise
- trace specification problem: given a set of allowed traces at each node v, is there an orbit such that the trace at each node is allowed?
- nilpotency/prediction/reachability reduce to trace problem

Trace properties vs. logic on orbits

Fact

Nilpotency can be LOGSPACE-reduced to trace specification for freezing CA.

Trace properties vs. logic on orbits

Fact

Nilpotency can be LOGSPACE-reduced to trace specification for freezing CA.

■ another way to see nilpotency:

$$
\exists x: x \rightarrow x \wedge \forall y, y \rightarrow^{+} x
$$

■ $c \rightarrow d$: configuration d reached from c in one step
$■ c \rightarrow^{+} d: d$ reached from c in some number of steps

Trace properties vs. logic on orbits

Fact

Nilpotency can be LOGSPACE-reduced to trace specification for freezing CA.

■ another way to see nilpotency:

$$
\exists x: x \rightarrow x \wedge \forall y, y \rightarrow^{+} x
$$

■ $c \rightarrow d$: configuration d reached from c in one step
$\square c \rightarrow^{+} d: d$ reached from c in some number of steps

■ FO^{+}: first order logic with predicates \rightarrow and \rightarrow^{+}

Finite vs. infinite 1D freezing

■ finite "1D" AN \equiv bounded degree and bounded pathwidth
■ recap of complexity results

	Infinite 1D CA	Finite "1D" AN
Nilpotency	Undecidable / Decidable	PSPACE-complete / ?
Trace properties	Undecidable / Undecidable	PSPACE-comp. / ?
FO^{+}	Undecidable / ?	PSPACE-complete / ?
(how to read the table: general case / freezing case)		

Finite vs. infinite 1D freezing

■ finite "1D" AN \equiv bounded degree and bounded pathwidth
■ recap of complexity results + our contributions:

	Infinite 1D CA	Finite "1D" AN
Nilpotency	Undecidable / Decidable	PSPACE-complete / co-NL
Trace properties	Undecidable / Undecidable	PSPACE-comp. / NL-comp.
FO^{+}	Undecidable / ?	PSPACE-complete / NP-hard
(how to read the table: general case / freezing case)		

1 minute proof sketch
 Trace properties are NL

■ question: \exists orbit with specified traces?

1 minute proof sketch
 Trace properties are NL

■ question: \exists orbit with specified traces?

■ convergence of orbits in poly time

1 minute proof sketch
 Trace properties are NL

■ question: \exists orbit with specified traces?

■ convergence of orbits in poly time

■ succinct representation of traces

1 minute proof sketch

■ question: \exists orbit with specified traces?

■ convergence of orbits in poly time

■ succinct representation of traces
■ NL algorithm:

- guess traces from left to right
- check adjacent traces

1 minute proof sketch
 FO^{+}is NP -hard

1 minute proof sketch FO^{+}is NP -hard

- reduction from 2D tiling problem

1 minute proof sketch FO^{+}is NP-hard

- reduction from 2D tiling problem
- layout on a line

1 minute proof sketch FO^{+}is NP-hard

- reduction from 2D tiling problem
- layout on a line

■ 1 valid orbit = check 1 vertical domino

1 minute proof sketch FO^{+}is NP-hard

■ reduction from 2D tiling problem

- layout on a line

■ 1 valid orbit = check 1 vertical domino

■ valid tiling = fixed point with only accepting valid orbits towards it

1 minute proof sketch FO^{+}is NP-hard

- reduction from 2D tiling problem
- layout on a line

■ 1 valid orbit = check 1 vertical domino

■ valid tiling = fixed point with only accepting valid orbits towards it

- technical: FO^{+}characterization of validity

