On the Dynamics of Bounded-Degree Automata Networks

Julio Aracena, Florian Bridoux, Pierre Guillon, Kévin Perrot, Adrien Richard and Guillaume Theyssier

CNRS, AMU, Institut de Mathématiques de Marseille

AUTOMATA 2023

abstract definition

- Q: alphabet
- *n* : number of components
- \square Q^n : space of configurations
- $F: Q^n \rightarrow Q^n$: global map (finite dynamical system)

• orbits:
$$x, F(x), F^2(x), ...$$

abstract definition

- Q: alphabet
- n : number of components
- \square Q^n : space of configurations
- $F: Q^n \rightarrow Q^n$: global map (finite dynamical system)
- orbits: $x, F(x), F^2(x), ...$

graph of dynamics G_{dyn} = (Qⁿ, {(x, F(x)) : x ∈ Qⁿ})
 considered up to isomorphism

concrete definition

- *G*_{com} = (*V*, *E*) a communication graph
 |V| = *n*
- local maps: $\delta_{v} : Q^{N^{-}(v)} \rightarrow Q$
- global map: $F: Q^V \to Q^V$ such that

$$F(x)_{v} = \delta_{v}(x_{|N^{-}(v)})$$

minimal communication graph = interaction graph

concrete definition

•
$$G_{\text{com}} = (V, E)$$
 a communication graph

$$|V| = n$$

- local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$
- global map: $F: Q^V \to Q^V$ such that

$$F(x)_{v} = \delta_{v}(x_{|N^{-}(v)})$$

minimal communication graph = interaction graph

General question

What are the possible G_{dyn} when constraining G_{com} ?

concrete definition

•
$$G_{\text{com}} = (V, E)$$
 a communication graph

$$|V| = n$$

- local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$
- global map: $F: Q^V \to Q^V$ such that

$$F(x)_{v} = \delta_{v}(x_{|N^{-}(v)})$$

minimal communication graph = interaction graph

General question

What are the possible G_{dyn} when constraining G_{com} ?

■ this talk: G_{com} is of **bounded degree** (wrt *n*).

3 examples of G_{dyn}

3 examples of G_{dyn}

Question

Which one can be realized with bounded degree G_{com} ?

Impossibility results

■ fix some degree *d*

 $\square q = |Q|$

• $\mathcal{F}(n, q, d)$: maps over Q^n with G_{com} of degree $\leq d$

Impossibility results

- fix some degree d
- $\blacksquare q = |Q|$
- $\mathcal{F}(n, q, d)$: maps over Q^n with G_{com} of degree $\leq d$
- **remark:** bounded degree *G*_{dyn} are sparse among all *G*_{dyn}, even among bijections

Impossibility results

fix some degree d

■ *q* = |*Q*|

- $\mathcal{F}(n, q, d)$: maps over Q^n with G_{com} of degree $\leq d$
- **remark:** bounded degree *G*_{dyn} are sparse among all *G*_{dyn}, even among bijections

Proposition

If $F \in \mathcal{F}(n, q, d)$ is not the identity, then it has at most $q^n - q^{n-d}$ fixed points.

Theorem

If $F \in \mathcal{F}(n,q,d)$ is not bijective, then its rank is at most $q^n - rac{n}{d+1}$.

Impossibility results

fix some degree d

■ *q* = |*Q*|

- $\mathcal{F}(n, q, d)$: maps over Q^n with G_{com} of degree $\leq d$
- **remark:** bounded degree *G*_{dyn} are sparse among all *G*_{dyn}, even among bijections

Proposition

If $F \in \mathcal{F}(n, q, d)$ is not the identity, then it has at most $q^n - q^{n-d}$ fixed points.

Theorem

If $F \in \mathcal{F}(n, q, d)$ is not bijective, then its rank is at most $q^n - rac{n}{d+1}$.

key proof ingredient: *k*-balance

Complexity of recognition

problem BDD

- *d* is any fixed *parameter*
- *input:* G_{dyn} given by Boolean circuits describing map F
- *question:* can G_{dyn} be realized by G_{com} of degree $\leq d$?

Complexity of recognition

problem BDD

- d is any fixed parameter
- *input:* G_{dyn} given by Boolean circuits describing map F
- *question:* can G_{dyn} be realized by G_{com} of degree $\leq d$?

Theorem

BDD is PSPACE and co-NP-hard.

- Δ dynamics are up to isomorphism
- without isomorphism, we get a co-NP-complete problem

Question

Is BDD NP-hard? higher in the polynomial hierarchy?

■ sparse / complex to recognize

■ sparse / complex to recognize / non-bij. are far from bij.

sparse / complex to recognize / non-bij. are far from bij.
what bijections can be realized?

Realization results

Feedback shift registers

■ $g: \{0,1\}^n \to \{0,1\}$

$$\blacksquare F_g(x_1,\ldots,x_n)=(x_2,\ldots,x_n,g(x))$$

"almost degree 1"

Realization results

Feedback shift registers

- **g**: $\{0,1\}^n \to \{0,1\}$
- $\blacksquare F_g(x_1,\ldots,x_n) = (x_2,\ldots,x_n,g(x))$
- "almost degree 1"

Work in progress

Unpublished theorem (Bridoux-Richard)

For **FSR**, the above G_{dyn} requires degree *n*.