On the Dynamics of Bounded-Degree Automata Networks

Julio Aracena, Florian Bridoux, Pierre Guillon, Kévin Perrot, Adrien Richard and Guillaume Theyssier

CNRS, AMU, Institut de Mathématiques de Marseille

AUTOMATA 2023

Automata Networks

abstract definition

■ Q : alphabet

- n : number of components

■ Q^{n} : space of configurations
■ $F: Q^{n} \rightarrow Q^{n}$: global map (finite dynamical system)
■ orbits: $x, F(x), F^{2}(x), \ldots$

Automata Networks

abstract definition

■ Q : alphabet
■ n : number of components

- Q^{n} : space of configurations

■ $F: Q^{n} \rightarrow Q^{n}$: global map (finite dynamical system)

- orbits: $x, F(x), F^{2}(x), \ldots$

■ graph of dynamics $G_{\text {dyn }}=\left(Q^{n},\left\{(x, F(x)): x \in Q^{n}\right\}\right)$
■ considered up to isomorphism

Automata Networks

concrete definition
■ $G_{\text {com }}=(V, E)$ a communication graph
■ $|V|=n$
■ local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$
■ global map: $F: Q^{V} \rightarrow Q^{V}$ such that

$$
F(x)_{v}=\delta_{v}\left(x_{\mid N^{-}(v)}\right)
$$

- minimal communication graph = interaction graph

Automata Networks

concrete definition
■ $G_{\text {com }}=(V, E)$ a communication graph
■ $|V|=n$
■ local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$
■ global map: $F: Q^{V} \rightarrow Q^{V}$ such that

$$
F(x)_{v}=\delta_{v}\left(x_{\mid N^{-}(v)}\right)
$$

- minimal communication graph = interaction graph

General question

What are the possible G_{dyn} when constraining G_{com} ?

Automata Networks

concrete definition
■ $G_{\text {com }}=(V, E)$ a communication graph
■ $|V|=n$
■ local maps: $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$
■ global map: $F: Q^{V} \rightarrow Q^{V}$ such that

$$
F(x)_{v}=\delta_{v}\left(x_{\mid N^{-}(v)}\right)
$$

- minimal communication graph = interaction graph

General question

What are the possible $G_{\text {dyn }}$ when constraining $G_{c o m}$?

■ this talk: $G_{\text {com }}$ is of bounded degree (wrt n).

3 examples of G_{dyn}

1 cycle
2^{n}

1 cycle +1 fixed point
$\left(2^{n}-1\right)+1$

1 cycle + constant size tree

$$
\left(2^{n}-C\right)+C
$$

3 examples of G_{dyn}

1 cycle + constant size tree

$$
\left(2^{n}-C\right)+C
$$

Question

Which one can be realized with bounded degree $G_{\text {com }}$?

Bounded degree dynamics

Impossibility results

- fix some degree d

■ $q=|Q|$
■ $\mathcal{F}(n, q, d)$: maps over Q^{n} with $G_{\text {com }}$ of degree $\leq d$

Bounded degree dynamics

Impossibility results

- fix some degree d

■ $q=|Q|$
■ $\mathcal{F}(n, q, d)$: maps over Q^{n} with $G_{\text {com }}$ of degree $\leq d$
■ remark: bounded degree $G_{d y n}$ are sparse among all G_{dyn}, even among bijections

Bounded degree dynamics

Impossibility results

- fix some degree d

■ $q=|Q|$
■ $\mathcal{F}(n, q, d)$: maps over Q^{n} with $G_{\text {com }}$ of degree $\leq d$
■ remark: bounded degree $G_{d y n}$ are sparse among all $G_{d y n}$, even among bijections

Proposition

If $F \in \mathcal{F}(n, q, d)$ is not the identity, then it has at most $q^{n}-q^{n-d}$ fixed points.

Theorem

If $F \in \mathcal{F}(n, q, d)$ is not bijective, then its rank is at most $q^{n}-\frac{n}{d+1}$.

Bounded degree dynamics

Impossibility results

- fix some degree d

■ $q=|Q|$
■ $\mathcal{F}(n, q, d)$: maps over Q^{n} with $G_{\text {com }}$ of degree $\leq d$
■ remark: bounded degree $G_{d y n}$ are sparse among all $G_{d y n}$, even among bijections

Proposition

If $F \in \mathcal{F}(n, q, d)$ is not the identity, then it has at most $q^{n}-q^{n-d}$ fixed points.

Theorem

If $F \in \mathcal{F}(n, q, d)$ is not bijective, then its rank is at most $q^{n}-\frac{n}{d+1}$.

■ key proof ingredient: k-balance

Bounded degree dynamics

Complexity of recognition

- problem BDD
- d is any fixed parameter
- input: $G_{\text {dyn }}$ given by Boolean circuits describing map F
- question: can $G_{d y n}$ be realized by $G_{\text {com }}$ of degree $\leq d$?

Bounded degree dynamics

Complexity of recognition

- problem BDD
- d is any fixed parameter

■ input: G_{dyn} given by Boolean circuits describing map F

- question: can G_{dyn} be realized by G_{com} of degree $\leq d$?

Theorem
 BDD is PSPACE and co-NP-hard.

- \triangle dynamics are up to isomorphism

■ without isomorphism, we get a co-NP-complete problem

Question

Is BDD NP-hard? higher in the polynomial hierarchy?

Bounded degree dynamics
 Global picture

Bounded degree dynamics

Global picture

- sparse

Bounded degree dynamics

Global picture

■ sparse / complex to recognize

Bounded degree dynamics

Global picture

■ sparse / complex to recognize / non-bij. are far from bij.

Bounded degree dynamics

Global picture

■ sparse / complex to recognize / non-bij. are far from bij.
■ what bijections can be realized?

Realization results

■ Feedback shift registers
■ $g:\{0,1\}^{n} \rightarrow\{0,1\}$
■ $F_{g}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, g(x)\right)$
■ "almost degree 1"

Realization results

■ Feedback shift registers
■ $g:\{0,1\}^{n} \rightarrow\{0,1\}$
■ $F_{g}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, g(x)\right)$
■ "almost degree 1"

Proposition

by FSR of degree n

by FSR of degree n or LFSR of degree 2 for some n

Work in progress

Aracena's conjecture

Unpublished theorem (Bridoux-Richard)
For FSR, the above $G_{\text {dyn }}$ requires degree n.

