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Automata Networks
abstract definition

Q : alphabet
n : number of components
Qn : space of configurations
F : Qn → Qn : global map (finite dynamical system)
orbits: x ,F (x),F 2(x), . . .
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graph of dynamics Gdyn = (Qn, {(x ,F (x)) : x ∈ Qn})
considered up to isomorphism
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Automata Networks
concrete definition

Gcom = (V ,E) a communication graph
|V | = n
local maps: δv : QN−(v) → Q
global map: F : QV → QV such that

F (x)v = δv (x|N−(v))

minimal communication graph = interaction graph

General question

What are the possible Gdyn when constraining Gcom?

this talk: Gcom is of bounded degree (wrt n).
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3 examples of Gdyn
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1 cycle + constant size tree

(2n − C) + C

Question

Which one can be realized with bounded degree Gcom?
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Bounded degree dynamics
Impossibility results

fix some degree d
q = |Q|
F(n,q,d): maps over Qn with Gcom of degree ≤ d

remark: bounded degree Gdyn are sparse among all Gdyn,
even among bijections

Proposition

If F ∈ F(n,q,d) is not the identity, then it has at most
qn − qn−d fixed points.

Theorem

If F ∈ F(n,q,d) is not bijective, then its rank is at most
qn − n

d+1 .

key proof ingredient: k−balance
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Bounded degree dynamics
Complexity of recognition

problem BDD
d is any fixed parameter
input: Gdyn given by Boolean circuits describing map F
question: can Gdyn be realized by Gcom of degree ≤ d?

Theorem

BDD is PSPACE and co-NP-hard.

!△dynamics are up to isomorphism
without isomorphism, we get a co-NP-complete problem

Question

Is BDD NP-hard? higher in the polynomial hierarchy?
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Bounded degree dynamics
Global picture

sparse / complex to recognize / non-bij. are far from bij.
what bijections can be realized?
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Realization results

Feedback shift registers
g : {0,1}n → {0,1}
Fg(x1, . . . , xn) = (x2, . . . , xn,g(x))
“almost degree 1”
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by FSR of degree n or
LFSR of degree 2 for some n
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Work in progress

Aracena’s conjecture
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cannot be realized with bounded degree Gcom.

Unpublished theorem (Bridoux-Richard)

For FSR, the above Gdyn requires degree n.


