## Automata networks 3 short stories

#### G. Theyssier

CNRS, AMU, Institut de Mathématiques de Marseille

Octobre 2022

## **Overview**

Finite and multicomponent dynamical system Distributed computational device with bounded memory

- McCulloc and Pitts (1940s)
- gene interaction networks
- social interaction networks
- distributed computing, graph automata
- memoryless computation
- network coding



2 Labeled graphs

**3** Succinct graphs

## Plan

## 1 Finite maps

**2** Labeled graphs

**3** Succinct graphs

## Q finite alphabet

#### Definition

An automata network is a **map**  $F : Q^n \to Q^n$  for some *n*.

### Q finite alphabet

#### Definition

An automata network is a **map**  $F : Q^n \to Q^n$  for some *n*.

*x* ∈ *Q<sup>n</sup>* is a configuration,
 *x*, *F*(*x*), *F*<sup>2</sup>(*x*), *F*<sup>3</sup>(*x*),... is an orbit.

## Q finite alphabet

#### Definition

An automata network is a **map**  $F : Q^n \to Q^n$  for some *n*.

# *x* ∈ *Q<sup>n</sup>* is a configuration, *x*, *F*(*x*), *F*<sup>2</sup>(*x*), *F*<sup>3</sup>(*x*),... is an orbit.

**Example:** swapping Boolean registers

$$\begin{aligned} &\sigma: \{\mathbf{0},\mathbf{1}\}^2 \rightarrow \{\mathbf{0},\mathbf{1}\}^2 \\ &\sigma(\pmb{a},\pmb{b}) = (\pmb{b},\pmb{a}) \end{aligned}$$





 $\bullet f: Q^n \to Q^n$ 

$$f: Q^n \to Q^n$$

$$f^{(v)}: Q^n \to Q^n$$

$$f^{(v)}(x)_i = \begin{cases} f(x)_i & \text{if } i = v \\ x_i & \text{else.} \end{cases}$$



$$f: Q^n \to Q^n$$

$$f^{(v)}: Q^n \to Q^n$$

$$f^{(v)}(x)_i = \begin{cases} f(x)_i & \text{if } i = v \\ x_i & \text{else.} \end{cases}$$



- *f*<sup>(v)</sup> maps are called *f*-instructions
- sequential semi-group (*f*)<sub>Seq</sub> = maps obtained by composition of *f*-instructions

$$f: Q^n \to Q^n$$

$$f^{(v)}: Q^n \to Q^n$$

$$f^{(v)}(x)_i = \begin{cases} f(x)_i & \text{if } i = v \\ x_i & \text{else.} \end{cases}$$



- *f*<sup>(v)</sup> maps are called *f*-instructions
- sequential semi-group (*f*)<sub>Seq</sub> = maps obtained by composition of *f*-instructions

• 
$$\sigma(a, b) = (b, a)$$
  
•  $\langle \sigma \rangle_{\text{Seq}} = ?$ 

$$f: Q^n \to Q^n$$

$$f^{(v)}: Q^n \to Q^n$$

$$f^{(v)}(x)_i = \begin{cases} f(x)_i & \text{if } i = v \\ x_i & \text{else.} \end{cases}$$



- *f*<sup>(v)</sup> maps are called *f*-instructions
- sequential semi-group (*f*)<sub>Seq</sub> = maps obtained by composition of *f*-instructions

• 
$$\sigma(a, b) = (b, a)$$
  
•  $\langle \sigma \rangle_{\text{Seq}} = \{ id; \sigma^{(1)}; \sigma^{(2)} \}$ 

• say g is sequentialized by f if  $g \in \langle f \rangle_{\text{Seq}}$ 

■ can  $\sigma(a, b) = (b, a)$  be sequentialized by some f?

- say g is sequentialized by f if  $g \in \langle f \rangle_{\text{Seq}}$
- can  $\sigma(a, b) = (b, a)$  be sequentialized by some f?

yes!

■ ⊕: addition mod 2 ■  $f(a,b) = (a \oplus b, a \oplus b)$ ■  $(a,b) \xrightarrow{f^{(1)}} (a \oplus b, b) \xrightarrow{f^{(2)}} (a \oplus b, a) \xrightarrow{f^{(1)}} (b, a)$ 

- say g is sequentialized by f if  $g \in \langle f \rangle_{\text{Seq}}$
- can  $\sigma(a, b) = (b, a)$  be sequentialized by some f?
- yes! ■ ⊕: addition mod 2 ■  $f(a, b) = (a \oplus b, a \oplus b)$ ■  $(a, b) \stackrel{f^{(1)}}{\rightarrow} (a \oplus b, b) \stackrel{f^{(2)}}{\rightarrow} (a \oplus b, a) \stackrel{f^{(1)}}{\rightarrow} (b, a)$ ■ so any  $(a_1, \dots, a_n) \mapsto (a_{\pi(1)}, \dots, a_{\pi(n)})$ .

say g is sequentialized by f if g ∈ (f)<sub>Seq</sub>
can σ(a, b) = (b, a) be sequentialized by some f?
yes!

⊕: addition mod 2
f(a, b) = (a ⊕ b, a ⊕ b)
(a, b) <sup>f<sup>(1)</sup></sup>/<sub>→</sub> (a ⊕ b, b) <sup>f<sup>(2)</sup></sup>/<sub>→</sub> (a ⊕ b, a) <sup>f<sup>(1)</sup></sup>/<sub>→</sub> (b, a)

so any (a<sub>1</sub>,..., a<sub>n</sub>) ↦ (a<sub>π(1)</sub>,..., a<sub>π(n)</sub>).

#### Theorem (Cameron-Fairbairn-Gadouleau, 2014)

 $\exists f \in F(Q^n)$  such that  $B(Q^n) \subseteq \langle f \rangle_{\text{Seq}}$  (unless n = |Q| = 2).

■ 
$$B(Q^n)$$
: bijections  $Q^n \to Q^n$   
■  $F(Q^n)$ : maps  $Q^n \to Q^n$ 

• the following  $g \in F(\{0, 1\}^2)$  is **not** sequentializable:

 $00\mapsto 01\mapsto 11\mapsto 10\mapsto 00$ 

**F. Bridoux** by computer search: any  $g \in F(\{0, 1\}^3)$  is sequentializable

• the following  $g \in F(\{0, 1\}^2)$  is **not** sequentializable:

 $00\mapsto 01\mapsto 11\mapsto 10\mapsto 00$ 

**F. Bridoux** by computer search: any  $g \in F(\{0, 1\}^3)$  is sequentializable

#### Theorem (Bridoux-Gadouleau-Theyssier, 2020)

For any  $|Q| \ge 3$  and  $n \ge 2$  there is  $g \in F(Q^n)$  which is not sequentializable.

• the following  $g \in F(\{0, 1\}^2)$  is **not** sequentializable:

 $00\mapsto 01\mapsto 11\mapsto 10\mapsto 00$ 

**F. Bridoux** by computer search: any  $g \in F(\{0, 1\}^3)$  is sequentializable

Theorem (Bridoux-Gadouleau-Theyssier, 2020)

For any  $|Q| \ge 3$  and  $n \ge 2$  there is  $g \in F(Q^n)$  which is not sequentializable.

Theorem (Bridoux-Gadouleau-Theyssier, 202?)

For any  $n \ge 5$  any  $g \in F(\{0, 1\}^n)$  is sequentializable.

## Plan



## 2 Labeled graphs



#### Definition

An automata network is a **finite graph labeled** by local maps  $\delta_{v}: Q^{N^{-}(v)} \to Q$ 

#### Definition

An automata network is a **finite graph labeled** by local maps  $\delta_{v}: Q^{N^{-}(v)} \to Q$ 





#### Definition

An automata network is a **finite graph labeled** by local maps  $\delta_{v}: Q^{N^{-}(v)} \to Q$ 





#### Definition

An automata network is a **finite graph labeled** by local maps  $\delta_{v}: Q^{N^{-}(v)} \to Q$ 



- majority networks are **universal**, in particular:
  - ∃ transients and cycles of **exponential** length
  - reachability ( $y \in Orbit(x)$ ?) is **PSPACE-complete**

what about majority on unoriented graphs?

what about majority on unoriented graphs?

Theorem (Goles-Olivios, 1980)

Any **undirected** majority network starting from any configuration reaches a cycle of **length** 1 or 2 in **polynomial** time.

what about majority on unoriented graphs?

#### Theorem (Goles-Olivios, 1980)

Any **undirected** majority network starting from any configuration reaches a cycle of **length** 1 **or** 2 in **polynomial** time.

## $\implies$ undirected majority networks are not universal:

- polynomial transient
- bounded cycles
- PTIME reachability

what about majority on unoriented graphs?

#### Theorem (Goles-Olivios, 1980)

Any **undirected** majority network starting from any configuration reaches a cycle of **length** 1 **or** 2 in **polynomial** time.

## $\blacksquare \implies$ undirected majority networks are not universal:

- polynomial transient
- bounded cycles
- PTIME reachability

much more is known (threshold rules, infinite graphs, etc)

# Symmetry versus asynchronism

asynchronism = periodic sequence of nodes updates



# Symmetry versus asynchronism

asynchronism = periodic sequence of nodes updates



bloc sequential = same update interval for each node

# Symmetry versus asynchronism

asynchronism = periodic sequence of nodes updates



bloc sequential = same update interval for each node

#### Theorem (Goles-Montealegre-Salo-Törmä, 2016)

**Undirected** majority networks under **bloc sequential** schedules are **universal**.

NB: sequence of updates of constant period is enough

$$Q = \{-1, 1\}$$

 $\blacksquare$  ponderation  $\pm$  on edges

•  $\delta_v = \text{ponderated minimum}$ 



$$Q = \{-1, 1\}$$

 $\blacksquare$  ponderation  $\pm$  on edges

•  $\delta_v = \text{ponderated minimum}$ 



$$Q = \{-1, 1\}$$

- $\blacksquare$  ponderation  $\pm$  on edges
- $\delta_v = \text{ponderated minimum}$



# Theorem (Ríos Wilson-Theyssier, 202?) synchronous bloc sequential local clocks periodic

$$Q = \{-1, 1\}$$

- $\blacksquare$  ponderation  $\pm$  on edges
- $\delta_v = \text{ponderated minimum}$



## Theorem (Ríos Wilson-Theyssier, 202?)

|             | synchronous                                                                  | $v_1$ $v_2$<br>bloc sequential                               | local clocks                                                                | v <sub>1</sub> v <sub>2</sub><br>periodic |
|-------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| , v         | $\leq Cst \\ \leq Cst \\ NC_0$                                               | universal                                                    | universal                                                                   | universal                                 |
| ? +         | $\leq$ poly $\leq$ poly PTIME                                                | $\leq$ poly<br>$\leq$ poly<br>PTIME                          | universal                                                                   | universal                                 |
| +<br>+<br>+ | $\leq \operatorname{poly} \\ \leq \operatorname{poly} \\ \operatorname{NP} $ | $\leq \operatorname{poly} \\ \leq \operatorname{poly} \\ NP$ | $\leq \operatorname{poly} \\ \leq \operatorname{poly} \\ \operatorname{NP}$ | ≤ poly<br>superpoly<br>NP                 |

## Plan

## **1** Finite maps

**2** Labeled graphs

**3** Succinct graphs

# **Orbit graphs**

# many automata network questions on their orbit graphs F(x) = y \iff (x, y) is an edge

# **Orbit graphs**

# many automata network questions on their orbit graphs F(x) = y \iff (x, y) is an edge

#### Definition

A **non-deterministic** automata network is a **directed graph** represented **succinctly** by a Boolean circuit C(x, y) computing its adjacency relation.

- vertices are identified by labels:  $x, y \in \{0, 1\}^n$
- **size of the graph:**  $N \leq 2^n$



$$N = 2^{n}$$

$$C(x, y) = \begin{cases} 1 & \text{if } x_{1} \neq y_{1}, \\ 0 & \text{else.} \end{cases}$$

# **Recall: Courcelle's theorem**

#### Theorem (Courcelle, 1990)

Any MSO formula can be tested in linear time on graphs of bounded treewidth.



■ monadic second order logic (MSO), *e.g.* 3-colorability:  $\exists X_1, X_2, X_3, \forall v, (\bigvee_i v \in X_i) \land (\forall v', \bigwedge_i \neg (adj(v, v') \land v \in X_i \land v' \in X_i))$ 

# Succinct graph property testing

For some property  $\mathcal{P}$  of graphs:

- **input**: *N* and circuit C(x, y)
- **question**: does the graph  $G_{N,C}$  satisfy  $\mathcal{P}$ ?

# Succinct graph property testing

For some property  $\mathcal{P}$  of graphs:

- **input**: *N* and circuit C(x, y)
- **question**: does the graph  $G_{N,C}$  satisfy  $\mathcal{P}$ ?

#### Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

Any non-trivial MSO property on **bounded treewidth succinct** graphs is either NP-hard or co-NP-hard.

- non-trivial  $\equiv \infty$  models and  $\infty$  counter-models of treewidth  $\leq k$
- Remark: determinism bounded treewidth orbit graph

# Succinct graph property testing

For some property  $\mathcal{P}$  of graphs:

- **input**: *N* and circuit C(x, y)
- **question**: does the graph  $G_{N,C}$  satisfy  $\mathcal{P}$ ?

#### Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

Any non-trivial MSO property on **bounded treewidth succinct** graphs is either NP-hard or co-NP-hard.

- non-trivial  $\equiv \infty$  models and  $\infty$  counter-models of treewidth  $\leq k$
- Remark: determinism bounded treewidth orbit graph

#### Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

There are non-trivial MSO property on **succinct** graphs which are **neither** NP-hard **nor** co-NP-hard (under reasonable complexity assumption).

non-trivial  $\equiv \infty$  models and  $\infty$  counter-models

# Thank you!

## 1 Finite maps

2 Labeled graphs

**3** Succinct graphs