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Overview

Finite and
multicomponent
dynamical system

Distributed
computational device

with bounded memory

McCulloc and Pitts (1940s)
gene interaction networks
social interaction networks
distributed computing, graph automata
memoryless computation
network coding
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Finite maps

Q finite alphabet

Definition

An automata network is a map F : Qn → Qn for some n.

x ∈ Qn is a configuration,
x ,F (x),F 2(x),F 3(x), . . . is an orbit.

Example: swapping Boolean registers

σ : {0,1}2 → {0,1}2

σ(a,b) = (b,a)

0011

0110
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Instructions, sequentialization

f : Qn → Qn

f (v) : Qn → Qn

f (v)(x)i =

{
f (x)i if i = v
xi else.

a b c

f

f1(a, b, c) f2(a, b, c) f3(a, b, c)

f (v) maps are called f -instructions
sequential semi-group 〈f 〉Seq = maps obtained by
composition of f -instructions

σ(a,b) = (b,a)
〈σ〉Seq =

{
id ;σ(1);σ(2)}
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What map can be sequentialized?
say g is sequentialized by f if g ∈ 〈f 〉Seq

can σ(a,b) = (b,a) be sequentialized by some f?

yes!
⊕: addition mod 2
f (a,b) = (a ⊕ b,a ⊕ b)

(a,b) f (1)→ (a ⊕ b,b) f (2)→ (a ⊕ b,a) f (1)→ (b,a)

so any (a1, . . . , an) 7→ (aπ(1), . . . , aπ(n)).

Theorem (Cameron-Fairbairn-Gadouleau, 2014)

∃f ∈ F (Qn) such that B(Qn) ⊆ 〈f 〉Seq (unless n = |Q| = 2).

B(Qn): bijections Qn → Qn

F (Qn): maps Qn → Qn



What map can be sequentialized?
say g is sequentialized by f if g ∈ 〈f 〉Seq

can σ(a,b) = (b,a) be sequentialized by some f?

yes!
⊕: addition mod 2
f (a,b) = (a ⊕ b,a ⊕ b)

(a,b) f (1)→ (a ⊕ b,b) f (2)→ (a ⊕ b,a) f (1)→ (b,a)

so any (a1, . . . , an) 7→ (aπ(1), . . . , aπ(n)).

Theorem (Cameron-Fairbairn-Gadouleau, 2014)

∃f ∈ F (Qn) such that B(Qn) ⊆ 〈f 〉Seq (unless n = |Q| = 2).

B(Qn): bijections Qn → Qn

F (Qn): maps Qn → Qn



What map can be sequentialized?
say g is sequentialized by f if g ∈ 〈f 〉Seq

can σ(a,b) = (b,a) be sequentialized by some f?

yes!
⊕: addition mod 2
f (a,b) = (a ⊕ b,a ⊕ b)

(a,b) f (1)→ (a ⊕ b,b) f (2)→ (a ⊕ b,a) f (1)→ (b,a)

so any (a1, . . . , an) 7→ (aπ(1), . . . , aπ(n)).

Theorem (Cameron-Fairbairn-Gadouleau, 2014)

∃f ∈ F (Qn) such that B(Qn) ⊆ 〈f 〉Seq (unless n = |Q| = 2).

B(Qn): bijections Qn → Qn

F (Qn): maps Qn → Qn



What map can be sequentialized?
say g is sequentialized by f if g ∈ 〈f 〉Seq

can σ(a,b) = (b,a) be sequentialized by some f?

yes!
⊕: addition mod 2
f (a,b) = (a ⊕ b,a ⊕ b)

(a,b) f (1)→ (a ⊕ b,b) f (2)→ (a ⊕ b,a) f (1)→ (b,a)

so any (a1, . . . , an) 7→ (aπ(1), . . . , aπ(n)).

Theorem (Cameron-Fairbairn-Gadouleau, 2014)

∃f ∈ F (Qn) such that B(Qn) ⊆ 〈f 〉Seq (unless n = |Q| = 2).

B(Qn): bijections Qn → Qn

F (Qn): maps Qn → Qn



What map can be sequentialized?

the following g ∈ F ({0,1}2) is not sequentializable:

00 7→ 01 7→ 11 7→ 10 7→ 00

F. Bridoux by computer search: any g ∈ F ({0,1}3) is
sequentializable

Theorem (Bridoux-Gadouleau-Theyssier, 2020)

For any |Q| ≥ 3 and n ≥ 2 there is g ∈ F (Qn) which is not
sequentializable.

Theorem (Bridoux-Gadouleau-Theyssier, 202?)

For any n ≥ 5 any g ∈ F ({0,1}n) is sequentializable.
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Definition

Definition

An automata network is a finite graph labeled by local maps
δv : QN−(v) → Q

example: Q = {0,1} and δv = majority

1

?x ∨ y

x y

0

?x ∧ y

x y

majority networks are universal, in particular:
∃ transients and cycles of exponential length
reachability (y ∈ Orbit(x)?) is PSPACE-complete
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The impact of symmetry

what about majority on unoriented graphs?

Theorem (Goles-Olivios, 1980)

Any undirected majority network starting from any
configuration reaches a cycle of length 1 or 2 in polynomial
time.

=⇒ undirected majority networks are not universal:
polynomial transient
bounded cycles
PTIME reachability

much more is known (threshold rules, infinite graphs, etc)
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Symmetry versus asynchronism

asynchronism = periodic sequence of nodes updates
time

v1

v2

v3

v4

bloc sequential = same update interval for each node

Theorem (Goles-Montealegre-Salo-Törmä, 2016)

Undirected majority networks under bloc sequential
schedules are universal.

NB: sequence of updates of constant period is enough
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On the edge of universality

Q = {−1,1}
ponderation ± on edges
δv = ponderated minimum

-
-1

+
1

+
1

?

Theorem (Ríos Wilson-Theyssier, 202?)

synchronous
v1 v2

bloc sequential

v1 v2

local clocks

v1 v2

periodic
-

--
v

≤ Cst
≤ Cst
NC0

universal universal universal

?

+?

v

≤ poly
≤ poly
PTIME

≤ poly
≤ poly
PTIME

universal universal

+

++

v

≤ poly
≤ poly

NP

≤ poly
≤ poly

NP

≤ poly
≤ poly

NP

≤ poly
superpoly

NP
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Orbit graphs
many automata network questions on their orbit graphs
F (x) = y ⇐⇒ (x , y) is an edge

Definition

A non-deterministic automata network is a directed graph
represented succinctly by a Boolean circuit C(x , y) computing
its adjacency relation.

vertices are identified by labels: x , y ∈ {0,1}n

size of the graph: N ≤ 2n

N = 2n

C(x , y) =

{
1 if x1 6= y1,

0 else.
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Recall: Courcelle’s theorem

Theorem (Courcelle,1990)

Any MSO formula can be tested in linear time on graphs of
bounded treewidth.

treewidth:

monadic second order logic (MSO), e.g. 3-colorability:

∃X1,X2,X3, ∀v ,
(∨

i

v ∈ Xi
)
∧
(
∀v ′,

∧
i

¬(adj(v , v ′)∧v ∈ Xi∧v ′ ∈ Xi)
)



Succinct graph property testing
For some property P of graphs:

input: N and circuit C(x , y)
question: does the graph GN,C satisfy P?

Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

Any non-trivial MSO property on bounded treewidth succinct
graphs is either NP-hard or co-NP-hard.

non-trivial ≡ ∞ models and ∞ counter-models of treewidth ≤ k

Remark: determinism =⇒ bounded treewidth orbit graph

Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

There are non-trivial MSO property on succinct graphs which
are neither NP-hard nor co-NP-hard (under reasonable complexity assumption).

non-trivial ≡ ∞ models and ∞ counter-models
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