Automata networks
 3 short stories

G. Theyssier

CNRS, AMU, Institut de Mathématiques de Marseille
Octobre 2022

Overview

Finite and multicomponent dynamical system

Distributed
computational device
with bounded memory

■ McCulloc and Pitts (1940s)

- gene interaction networks

■ social interaction networks
■ distributed computing, graph automata

- memoryless computation
- network coding

Plan

1 Finite maps

2 Labeled graphs

3 Succinct graphs

Plan

1 Finite maps

2 Labeled graphs

3 Succinct graphs

Finite maps

- Q finite alphabet

Definition

An automata network is a map $F: Q^{n} \rightarrow Q^{n}$ for some n.

Finite maps

- Q finite alphabet

Definition

An automata network is a map $F: Q^{n} \rightarrow Q^{n}$ for some n.

■ $x \in Q^{n}$ is a configuration,
■ $x, F(x), F^{2}(x), F^{3}(x), \ldots$ is an orbit.

Finite maps

■ Q finite alphabet

Definition

An automata network is a map $F: Q^{n} \rightarrow Q^{n}$ for some n.

■ $x \in Q^{n}$ is a configuration,
■ $x, F(x), F^{2}(x), F^{3}(x), \ldots$ is an orbit.

■ Example: swapping Boolean registers

$$
\begin{aligned}
& \sigma:\{0,1\}^{2} \rightarrow\{0,1\}^{2} \\
& \sigma(a, b)=(b, a)
\end{aligned}
$$

C(11) 00

Instructions, sequentialization

■ $f: Q^{n} \rightarrow Q^{n}$

Instructions, sequentialization

■ $f: Q^{n} \rightarrow Q^{n}$

- $f^{(v)}: Q^{n} \rightarrow Q^{n}$
- $f^{(v)}(x)_{i}= \begin{cases}f(x)_{i} & \text { if } i=v \\ x_{i} & \text { else. }\end{cases}$

Instructions, sequentialization

$$
\begin{aligned}
& \square f: Q^{n} \rightarrow Q^{n} \\
& \square f^{(v)}: Q^{n} \rightarrow Q^{n} \\
& f^{(v)}(x)_{i}= \begin{cases}f(x)_{i} & \text { if } i=v \\
x_{i} & \text { else. }\end{cases}
\end{aligned}
$$

■ $f^{(v)}$ maps are called f-instructions
■ sequential semi-group $\langle f\rangle_{\text {Seq }}=$ maps obtained by composition of f-instructions

Instructions, sequentialization

$$
\begin{aligned}
& ■ f: Q^{n} \rightarrow Q^{n} \\
& \square f^{(v)}: Q^{n} \rightarrow Q^{n} \\
& f^{(v)}(x)_{i}= \begin{cases}f(x)_{i} & \text { if } i=v \\
x_{i} & \text { else. }\end{cases}
\end{aligned}
$$

■ $f^{(v)}$ maps are called f-instructions
■ sequential semi-group $\langle f\rangle_{\text {Seq }}=$ maps obtained by composition of f-instructions

- $\sigma(a, b)=(b, a)$
- $\langle\sigma\rangle_{\text {Seq }}=$?

Instructions, sequentialization

$$
\begin{aligned}
& ■ f: Q^{n} \rightarrow Q^{n} \\
& \square f^{(v)}: Q^{n} \rightarrow Q^{n} \\
& ■ f^{(v)}(x)_{i}= \begin{cases}f(x)_{i} & \text { if } i=v \\
x_{i} & \text { else. }\end{cases}
\end{aligned}
$$

■ $f^{(v)}$ maps are called f-instructions
■ sequential semi-group $\langle f\rangle_{\text {Seq }}=$ maps obtained by composition of f-instructions

- $\sigma(a, b)=(b, a)$

■ $\langle\sigma\rangle_{\mathrm{Seq}}=\left\{i d ; \sigma^{(1)} ; \sigma^{(2)}\right\}$

What map can be sequentialized?

■ say g is sequentialized by f if $g \in\langle f\rangle_{\text {Seq }}$

- can $\sigma(a, b)=(b, a)$ be sequentialized by some f ?

What map can be sequentialized?

■ say g is sequentialized by f if $g \in\langle f\rangle_{\text {Seq }}$

- can $\sigma(a, b)=(b, a)$ be sequentialized by some f ?

■ yes!
■ \oplus : addition mod 2

- $f(a, b)=(a \oplus b, a \oplus b)$

■ $(a, b) \xrightarrow{f^{(1)}}(a \oplus b, b) \xrightarrow{f^{(2)}}(a \oplus b, a) \xrightarrow{f^{(1)}}(b, a)$

What map can be sequentialized?

■ say g is sequentialized by f if $g \in\langle f\rangle_{\text {Seq }}$
■ can $\sigma(a, b)=(b, a)$ be sequentialized by some f ?
■ yes!

- \oplus : addition $\bmod 2$
- $f(a, b)=(a \oplus b, a \oplus b)$

■ $(a, b) \xrightarrow{f^{(1)}}(a \oplus b, b) \xrightarrow{f^{(2)}}(a \oplus b, a) \xrightarrow{f^{(1)}}(b, a)$
$■$ so any $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)$.

What map can be sequentialized?

- say g is sequentialized by f if $g \in\langle f\rangle_{\text {Seq }}$
- can $\sigma(a, b)=(b, a)$ be sequentialized by some f ?

■ yes!

- \oplus : addition mod 2
- $f(a, b)=(a \oplus b, a \oplus b)$
- $(a, b) \xrightarrow{f^{(1)}}(a \oplus b, b) \xrightarrow{f^{(2)}}(a \oplus b, a) \xrightarrow{f^{(1)}}(b, a)$

■ so any $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)$.
Theorem (Cameron-Fairbairn-Gadouleau, 2014)
$\exists f \in F\left(Q^{n}\right)$ such that $B\left(Q^{n}\right) \subseteq\langle f\rangle_{\text {Seq }}$ (unless $n=|Q|=2$).

- $B\left(Q^{n}\right)$: bijections $Q^{n} \rightarrow Q^{n}$
- $F\left(Q^{n}\right):$ maps $Q^{n} \rightarrow Q^{n}$

What map can be sequentialized?

- the following $g \in F\left(\{0,1\}^{2}\right)$ is not sequentializable:

$$
00 \mapsto 01 \mapsto 11 \mapsto 10 \mapsto 00
$$

■ F. Bridoux by computer search: any $g \in F\left(\{0,1\}^{3}\right)$ is sequentializable

What map can be sequentialized?

■ the following $g \in F\left(\{0,1\}^{2}\right)$ is not sequentializable:

$$
00 \mapsto 01 \mapsto 11 \mapsto 10 \mapsto 00
$$

■ F. Bridoux by computer search: any $g \in F\left(\{0,1\}^{3}\right)$ is sequentializable

Theorem (Bridoux-Gadouleau-Theyssier, 2020)

For any $|Q| \geq 3$ and $n \geq 2$ there is $g \in F\left(Q^{n}\right)$ which is not sequentializable.

What map can be sequentialized?

\square the following $g \in F\left(\{0,1\}^{2}\right)$ is not sequentializable:

$$
00 \mapsto 01 \mapsto 11 \mapsto 10 \mapsto 00
$$

■ F. Bridoux by computer search: any $g \in F\left(\{0,1\}^{3}\right)$ is sequentializable

Theorem (Bridoux-Gadouleau-Theyssier, 2020)
For any $|Q| \geq 3$ and $n \geq 2$ there is $g \in F\left(Q^{n}\right)$ which is not sequentializable.

Theorem (Bridoux-Gadouleau-Theyssier, 202?)

For any $n \geq 5$ any $g \in F\left(\{0,1\}^{n}\right)$ is sequentializable.

Plan

1 Finite maps

2 Labeled graphs

3 Succinct graphs

Definition

Definition

An automata network is a finite graph labeled by local maps $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$

■ example: $Q=\{0,1\}$ and $\delta_{v}=$ majority

Definition

Definition

An automata network is a finite graph labeled by local maps $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$

■ example: $Q=\{0,1\}$ and $\delta_{v}=$ majority

Definition

Definition

An automata network is a finite graph labeled by local maps $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$

■ example: $Q=\{0,1\}$ and $\delta_{v}=$ majority

Definition

Definition

An automata network is a finite graph labeled by local maps $\delta_{v}: Q^{N^{-}(v)} \rightarrow Q$

■ example: $Q=\{0,1\}$ and $\delta_{v}=$ majority

■ majority networks are universal, in particular:
■ \exists transients and cycles of exponential length

- reachability ($y \in \operatorname{Orbit}(x)$?) is PSPACE-complete

The impact of symmetry

- what about majority on unoriented graphs?

The impact of symmetry

■ what about majority on unoriented graphs?

Theorem (Goles-Olivios, 1980)

Any undirected majority network starting from any configuration reaches a cycle of length 1 or 2 in polynomial time.

The impact of symmetry

- what about majority on unoriented graphs?

Theorem (Goles-Olivios, 1980)

Any undirected majority network starting from any configuration reaches a cycle of length 1 or 2 in polynomial time.

■ \Longrightarrow undirected majority networks are not universal:

- polynomial transient
- bounded cycles

■ PTIME reachability

The impact of symmetry

■ what about majority on unoriented graphs?

Theorem (Goles-Olivios, 1980)

Any undirected majority network starting from any configuration reaches a cycle of length 1 or 2 in polynomial time.
$■ \Longrightarrow$ undirected majority networks are not universal:

- polynomial transient
- bounded cycles

■ PTIME reachability

■ much more is known (threshold rules, infinite graphs, etc)

Symmetry versus asynchronism

■ asynchronism = periodic sequence of nodes updates

Symmetry versus asynchronism

■ asynchronism = periodic sequence of nodes updates

■ bloc sequential = same update interval for each node

Symmetry versus asynchronism

■ asynchronism = periodic sequence of nodes updates

■ bloc sequential = same update interval for each node

Theorem (Goles-Montealegre-Salo-Törmä, 2016)
Undirected majority networks under bloc sequential schedules are universal.

■ NB: sequence of updates of constant period is enough

On the edge of universality

- $Q=\{-1,1\}$
- ponderation \pm on edges
- $\delta_{v}=$ ponderated minimum

On the edge of universality

■ $Q=\{-1,1\}$
■ ponderation \pm on edges

- $\delta_{v}=$ ponderated minimum

On the edge of universality

- $Q=\{-1,1\}$
- ponderation \pm on edges
- $\delta_{v}=$ ponderated minimum

Theorem (Ríos Wilson-Theyssier, 202?)

On the edge of universality

- $Q=\{-1,1\}$

■ ponderation \pm on edges
■ $\delta_{v}=$ ponderated minimum

Theorem (Ríos Wilson-Theyssier, 202?)

	synchronous	bloc sequential		
	$\begin{aligned} & \leq \mathrm{Cst} \\ & \leq \mathrm{Cst} \\ & \mathrm{NC}_{0} \end{aligned}$	universal	universal	universal
$\begin{gathered} ? \\ ?^{\prime} \\ v^{\prime} \end{gathered}$	$\begin{aligned} & \leq \text { poly } \\ & \text { <poly } \\ & \text { PTIME } \end{aligned}$	$\begin{aligned} & \leq \text { poly } \\ & \text { <poly } \\ & \hline \text { PTIME } \end{aligned}$	universal	universal
$\begin{gathered} + \\ 1 \\ { }^{\prime}, \\ \mathbf{v}^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & \leq \text { poly } \\ & \leq \text { poly } \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \leq \text { poly } \\ & \leq \text { poly } \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \leq \text { poly } \\ & \leq \text { poly } \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \leq \text { poly } \\ \text { superpoly } \\ \mathrm{NP} \end{gathered}$

Plan

1 Finite maps

2 Labeled graphs

3 Succinct graphs

Orbit graphs

■ many automata network questions on their orbit graphs
■ $F(x)=y \Longleftrightarrow(x, y)$ is an edge

Orbit graphs

■ many automata network questions on their orbit graphs
■ $F(x)=y \Longleftrightarrow(x, y)$ is an edge

Definition

A non-deterministic automata network is a directed graph represented succinctly by a Boolean circuit $C(x, y)$ computing its adjacency relation.

■ vertices are identified by labels: $x, y \in\{0,1\}^{n}$
■ size of the graph: $N \leq 2^{n}$

■ $N=2^{n}$
$\square C(x, y)= \begin{cases}1 & \text { if } x_{1} \neq y_{1}, \\ 0 & \text { else } .\end{cases}$

Recall: Courcelle's theorem

Theorem (Courcelle,1990)

Any MSO formula can be tested in linear time on graphs of bounded treewidth.

■ treewidth:

■ monadic second order logic (MSO), e.g. 3-colorability:
$\exists X_{1}, X_{2}, X_{3}, \forall v,\left(\bigvee_{i} v \in X_{i}\right) \wedge\left(\forall v^{\prime}, \bigwedge_{i} \neg\left(\operatorname{adj}\left(v, v^{\prime}\right) \wedge v \in X_{i} \wedge v^{\prime} \in X_{i}\right)\right)$

Succinct graph property testing

- For some property \mathcal{P} of graphs:

■ input: N and circuit $C(x, y)$
■ question: does the graph $G_{N, C}$ satisfy \mathcal{P} ?

Succinct graph property testing

■ For some property \mathcal{P} of graphs:

- input: N and circuit $C(x, y)$
- question: does the graph $G_{N, C}$ satisfy \mathcal{P} ?

Theorem (Gammard-Guillon-Perrot-Theysier, 202?)
Any non-trivial MSO property on bounded treewidth succinct graphs is either NP-hard or co-NP-hard.

■ non-trivial $\equiv \infty$ models and ∞ counter-models of treewidth $\leq k$
■ Remark: determinism \Longrightarrow bounded treewidth orbit graph

Succinct graph property testing

- For some property \mathcal{P} of graphs:
- input: N and circuit $C(x, y)$
- question: does the graph $G_{N, C}$ satisfy \mathcal{P} ?

Theorem (Gammard-Guillon-Perrot-Theysier, 202?)
Any non-trivial MSO property on bounded treewidth succinct graphs is either NP-hard or co-NP-hard.

■ non-trivial $\equiv \infty$ models and ∞ counter-models of treewidth $\leq k$
■ Remark: determinism \Longrightarrow bounded treewidth orbit graph

Theorem (Gammard-Guillon-Perrot-Theysier, 202?)

There are non-trivial MSO property on succinct graphs which are neither NP-hard nor co-NP-hard (under reasonable complexity assumpion).

■ non-trivial $\equiv \infty$ models and ∞ counter-models

Thank you!

1 Finite maps

2 Labeled graphs

3 Succinct graphs

