On simulation in automata networks CiE 2020

F. Bridoux, M. Gadouleau, G. Theyssier

LIS, Université Aix-Marseille, CNRS, France

Department of Computer Science, Durham University, UK

I2M, Université Aix-Marseille, CNRS, France

June 2020

$$\blacksquare swap(a,b) = (b,a)$$

swap(a, b) = (b, a)
a sequential solution

1
$$c := a$$

2 $a := b$
3 $b := c$

$$\blacksquare swap(a,b) = (b,a)$$

- a sequential solution
- a sequential memoryless solution

1 C := A	1 a := a XOR b
2 a := b	2 b := a XOR b
3 b := c	3 a := a XOR b

$$swap(a,b) = (b,a)$$

- a sequential solution
- a sequential memoryless solution

1 C := A	1 a := a XOR b
2 a := b	2 b := a XOR b
3 b := c	3 a := a XOR b

This talk is about automata network:

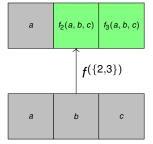
- computational model to study such problems
- modeling tool, synchronism vs. asynchronism in nature

f ₁ (a, b, c)	f ₂ (a, b, c)	f ₃ (a, b, c)		
f				
а	b	с		

$$f: Q^n \to Q^n$$

$$f: Q^n \to Q^n$$

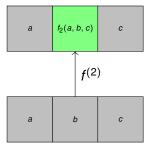
$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$



$$f: Q^n \to Q^n$$

$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$

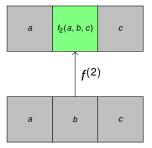
$$f^{(v)}, v \in [1, n]$$



$$f: Q^n \to Q^n$$

$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$

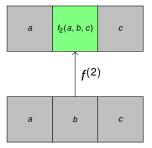
$$f^{(v)}, v \in [1, n]$$



$$f: Q^n \to Q^n$$

$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$

$$f^{(v)}, v \in [1, n]$$

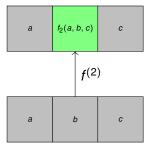


$$\langle f \rangle_{\text{Asy}} := \left\langle \left\{ f^{(S)} : S \subseteq [1, n] \right\} \right\rangle$$
$$\langle f \rangle_{\text{Seq}} := \left\langle \left\{ f^{(v)} : v \in [1, n] \right\} \right\rangle$$

$$f: Q^n \to Q^n$$

$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$

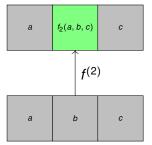
$$f^{(v)}, v \in [1, n]$$



$$f: Q^n \to Q^n$$

$$f^{(S)}(x)_i = \begin{cases} f(x)_i & \text{if } i \in S \\ x_i & \text{else.} \end{cases}$$

$$f^{(v)}, v \in [1, n]$$



Problems

How rich can be $\langle f \rangle_{\text{Seq}}$? and $\langle f \rangle_{\text{Asy}}$? Given *g*, is there *f* with $g \in \langle f \rangle_{\text{Seq}}$?

■ $Q = \{0, ..., q-1\}, n, q \ge 2$ ■ F(n, q): maps $Q^n \to Q^n$ ■ B(n, q): bijections $Q^n \to Q^n$

$$Q = \{0, \dots, q-1\}, n, q \ge 2$$

$$F(n, q): \text{ maps } Q^n \to Q^n$$

$$B(n, q): \text{ bijections } Q^n \to Q^n$$

Theorem (BURCKEL, 1993)

 $F(n,q) = \langle F(n,q) \rangle_{\text{Seq}}.$

■
$$Q = \{0, ..., q-1\}, n, q \ge 2$$

■ $F(n, q)$: maps $Q^n \rightarrow Q^n$
■ $B(n, q)$: bijections $Q^n \rightarrow Q^n$

Theorem (BURCKEL, 1993)

 $F(n,q) = \langle F(n,q) \rangle_{\text{Seq}}.$

Theorem (CAMERON ET AL., 2014)

 $\exists f \in F(n,q)$ such that $B(n,q) \subseteq \langle f \rangle_{\text{Seq}}$ (unless n = q = 2).

■
$$Q = \{0, ..., q-1\}, n, q \ge 2$$

■ $F(n, q)$: maps $Q^n \rightarrow Q^n$
■ $B(n, q)$: bijections $Q^n \rightarrow Q^n$

Theorem (BURCKEL, 1993)

 $F(n,q) = \langle F(n,q) \rangle_{\text{Seq}}.$

Theorem (CAMERON ET AL., 2014)

 $\exists f \in F(n,q)$ such that $B(n,q) \subseteq \langle f \rangle_{\text{Seq}}$ (unless n = q = 2).

Theorem (BRIDOUX ET AL., 2020)

 $\exists f \in F(n,q) \text{ such that } F(n,q) \subseteq \langle f \rangle_{\text{Seq}}.$

• say g is sequentialized by f if $g \in \langle f \rangle_{\text{Seq}}$

• say g is sequentialized by f if $g \in \langle f \rangle_{\text{Seq}}$

by computer (http://theyssier.org/san2020/)

• the following $g \in F(2,2)$ is **not** sequentializable:

 $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$

• say g is sequentialized by f if $g \in \langle f \rangle_{\text{Seq}}$

■ by computer (http://theyssier.org/san2020/)

• the following $g \in F(2,2)$ is **not** sequentializable:

 $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$

■ any $g \in F(3, 2)$ is sequentializable

• say g is sequentialized by f if $g \in \langle f \rangle_{\text{Seq}}$

by computer (http://theyssier.org/san2020/)

• the following $g \in F(2,2)$ is **not** sequentializable:

 $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$

■ any $g \in F(3, 2)$ is sequentializable

Theorem

For any $q \ge 3$ and $n \ge 2$ there are some $g \in F(n, q)$ which are not sequentializable.

```
• say g is sequentialized by f if g \in \langle f \rangle_{\text{Seq}}
```

by computer (http://theyssier.org/san2020/)

• the following $g \in F(2,2)$ is **not** sequentializable:

 $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$

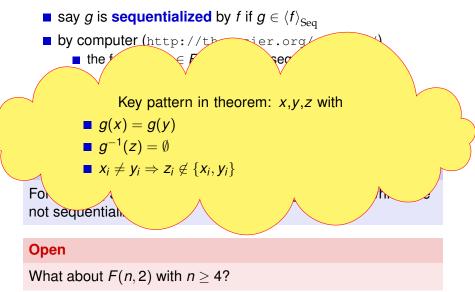
any $g \in F(3, 2)$ is sequentializable

Theorem

For any $q \ge 3$ and $n \ge 2$ there are some $g \in F(n, q)$ which are not sequentializable.

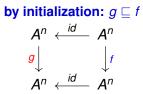
Open

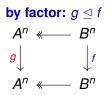
What about F(n, 2) with $n \ge 4$?



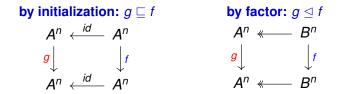
 $A \subseteq B$ $g : A^n \to A^n$ $f : B^n \to B^n$

 $A \subseteq B$ $g: A^n \to A^n$ $f: B^n \to B^n$





 $A \subseteq B$ $g: A^n \to A^n$ $f: B^n \to B^n$

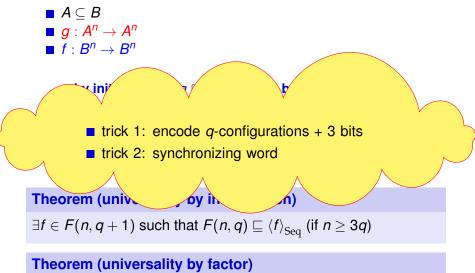


Theorem (universality by initialization)

 $\exists f \in F(n, q + 1)$ such that $F(n, q) \sqsubseteq \langle f \rangle_{\text{Seq}}$ (if $n \ge 3q$)

Theorem (universality by factor)

 $\exists f \in F(n, 2q)$ such that $F(n, q) \trianglelefteq \langle f \rangle_{Seq}$ (if $n \ge 3$)



 $\exists f \in F(n, 2q)$ such that $F(n, q) \trianglelefteq \langle f \rangle_{Seq}$ (if $n \ge 3$)

Interaction graphs

f: *Qⁿ* → *Qⁿ* interaction digraph *G*(*f*) = (*V*, *E*)
 V = {1,..., *n*}
 (*i*, *j*) ∈ *E* ⇔ node *j* effectively depends on node *i*

 $f(x)_j \neq f(y)_j$

for $x, y \in Q^n$ differing only at *i*

Interaction graphs

f : *Qⁿ* → *Qⁿ* interaction digraph *G*(*f*) = (*V*, *E*)
 V = {1,..., *n*}
 (*i*, *j*) ∈ *E* ⇔ node *j* effectively depends on node *i f*(*x*)_{*i*} ≠ *f*(*y*)_{*j*}

for $x, y \in Q^n$ differing only at *i*

digraph *D* fixed:

$$F(D,q) = \{f \in F(n,q) : G(f) \subseteq D\}$$

if *D* reflexive then

$$\langle F(D,q) \rangle_{\mathrm{Seq}} \subseteq \langle F(D,q) \rangle_{\mathrm{Asy}} = \langle F(D,q) \rangle$$

Tchuente's Theorem

Theorem (TCHUENTE, 1986)

For *D* reflexive with *n* vertices, TFAE:

$$\langle F(D,q)\rangle = F(n,q)$$

2 D strongly connected and has vertex of in-degree n

Tchuente's Theorem

Theorem (TCHUENTE, 1986)

For *D* reflexive with *n* vertices, TFAE:

$$\langle F(D,q)\rangle = F(n,q)$$

2 D strongly connected and has vertex of in-degree n

Theorem

For D reflexive, TFAE:

$$\langle F(D,q) \rangle = F(n,q)$$

$$2 \langle F(D,q) \rangle_{\text{Seq}} = F(n,q)$$

Last words

■ more in the paper (singular instructions, assignments, etc)

Last words

more in the paper (singular instructions, assignments, etc)

main question left open:

All Boolean maps can be sequentialized?

 $\forall n \geq 3, \forall g \in F(n, 2), \exists f \in F(n, 2) : g \in \langle f \rangle_{\text{Seq}}$?

Last words

more in the paper (singular instructions, assignments, etc)

main question left open:

All Boolean maps can be sequentialized?

 $\forall n \geq 3, \forall g \in F(n, 2), \exists f \in F(n, 2) : g \in \langle f \rangle_{Seq}$?

Thank you!