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Definitions

configurations: QZD
, Q finite

topology:
d(x , y) = 2−min{‖z‖∈ZD :xz 6=yz}

cellular automaton: F : QZD → QZD

∀z ∈ ZD,F (c)z = f
(
j ∈ V 7→ cz+j

)
V ⊆ ZD finite neighborhood, f : QV → Q local rule



Cold dynamics

F is freezing if there is an order � on Q s.t.

∀x ,∀z : F (x)z � xz

F is k -change if

∀x ,∀z :
∣∣{t ∈ N : F t+1(x)z 6= F t (x)z}

∣∣ ≤ k

F is convergent if (F t (x))t is convergent for all x , i.e.

∀x ,∃x∞ : d
(
F t (x), x∞

)
→ 0
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Cold dynamics

Fixed points: ΣF = {x : F (x) = x}

Fω(x) = limt→∞ F t (x)

Fω : QZ2 → ΣF

classical example:
Σ = your favorite SFT
ΣF = Σ ∪ {s}
F : identity over Σ + spreading state s

General questions
how long does it take for a cell to freeze?
how rich can be the transient?
how complex can be Fω(x) compared to x ?
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Some facts in 1D
(with E. Goles and N. Ollinger)

Freezing k -change Convergent

Membership PTIME undecidable undecidable

Turing-universal YES YES YES

Prediction LOGSPACE LOGSPACE P-complete

CC(Prediction) O(log(n)) O(log(n)) can be ≥
√

n

Nilpotency decidable decidable decidable

Carton-Guillon-Reiter, 2018
One-way freezing CA recognize the same languages as
sumless/copyless counter machines.
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2D freezing CA
Life without death Bootstrap percolation

Random example SIR propagation models



Uncomputable limit points

Theorem (Lathrop-Lutz-Patitz-Summers, 2010)
A directed self-assembly aTAM system can do this:

Corollary
∃ F freezing and x finite such that Fω(x) is uncomputable.
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Simulations

simulated (G) simulator (F )
1 cell 1 block of m ×m cells

1 step T steps

1 context free:

φ : QG → Qm×m
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Universality
a CA is universal if it can simulate any other CA

Well-known
Whatever the dimension, there are universal CA for context free
simulations

F is freezing-universal if it is freezing and can simulate
any freezing CA
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Obstacles to Freezing-universality
(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem
No freezing-universal CA for context-free simulations, whatever
the dimension.

Intuition: macro-cell change⇒ simulated state change

Theorem
No 1-change freezing universal in 2D with von Neumann
neighborhood.

Intuition: Jordan’s curves
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Freezing-universality
(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

information crossing:
2 changes enough in 2D with von Neumann neighb.
1 change enough in 3D or 2D with Moore neighb.

synchronization (6= from aTAM universality)



Freezing-universality
(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

information crossing:
2 changes enough in 2D with von Neumann neighb.
1 change enough in 3D or 2D with Moore neighb.

synchronization (6= from aTAM universality)



Freezing-universality
(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

information crossing:
2 changes enough in 2D with von Neumann neighb.
1 change enough in 3D or 2D with Moore neighb.

synchronization (6= from aTAM universality)



Freezing-universality
(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

information crossing:
2 changes enough in 2D with von Neumann neighb.
1 change enough in 3D or 2D with Moore neighb.

synchronization (6= from aTAM universality)



5 states / von Neumann neighb.
Freezing order: �,� ≥ �,� ≥ �

Transitions changing the state:
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Corollary
There is x eventually periodic such that Fω(x) is uncomputable.
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Rule 1

Q = {0,1}
V von Neumann neighb.

F1(x)z =


1 if xz = 1,
1 if #1(z + V ) = 1,
0 else.

S. Ulam, 1960s

1-change + von Neumann⇒ not freezing-universal
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Rule 1 and 2-automaticity
(with E. Goles, P. Montealegre, V. Salo)

xk : base-k representation of x ∈ N

X ⊆ N is k -automatic if {xk : x ∈ X} is DFA-recognizable

Theorem (Rowland-Yassawi, 2015)
X is k -automatic IFF it is a column in the space-time diagram of
a linear CA starting from an eventually periodic configuration.

same definition for X ⊆ Z2 using alphabet {0, . . . , k − 1}2

(9,2) 7→ 1 0 0 1
0 0 1 0

Claim
For any eventually periodic x , Fω

1 (x) is 2-automatic.
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Questions

1 is “life without death” freezing-universal?

2 is there a bounded-change-universal CA?

3 is there a convergent-universal CA?

4 what freezing CA have 2-automatic limits starting from
eventually periodic configurations?


