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Definitions

e configurations: Q%°, Q finite

@ topology:
d(x, y) = 2~ min{liZI€Z°x:y:}

e cellular automaton: F : Q?° — Q%°
VzeZP F(c),=f(j€ V> czy))

V C ZP finite neighborhood, f : Q¥ — Q local rule
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Cold dynamics

@ F is freezing if there is an order < on Q s.t.

Vx,Vz F(X)z = Xz

@ F is k-change if

vx,Vz o [{t e N: F'T(x); # Fi(x),}| < k

@ Fis convergent if (F!(x)); is convergent for all x, i.e.

VX, oo+ d(FY(X), Xo0) — O
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Cold dynamics
@ Fixed points: X = {x: F(x) = x}

@ F¥(x) = lim_ o Fi(X)
@ Fv: QZZ —XF

@ classical example:

e ¥ = your favorite SFT
e Yr=XYU({S}
o F: identity over ¥ + spreading state s

General questions
@ how long does it take for a cell to freeze?
@ how rich can be the transient?
@ how complex can be F“(x) compared to x ?
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Freezing k-change Convergent
Membership PTIME undecidable | undecidable
Turing-universal YES YES YES
Prediction | LOGSPACE | LOGSPACE | P-complete
CC(Prediction) | O(log(n)) O(log(n)) | canbe > +/n
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(with E. Goles and N. Ollinger)

Freezing k-change Convergent
Membership PTIME undecidable | undecidable
Turing-universal YES YES YES
Prediction | LOGSPACE | LOGSPACE | P-complete
CC(Prediction) | O(log(n)) O(log(n)) | canbe > v/n
Nilpotency | decidable decidable decidable

Carton-Guillon-Reiter, 2018

One-way freezing CA recognize the same languages as
sumless/copyless counter machines.



2D freezing CA

Life without death Bootstrap percolation

Random example SIR propagation models




Uncomputable limit points
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Uncomputable limit points

Theorem (Lathrop-Lutz-Patitz-Summers, 2010)
A directed self-assembly aTAM system can do this:

Corollary
3 F freezing and x finite such that F¥(x) is uncomputable.
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Universality
@ a CAis universal if it can simulate any other CA

Well-known

Whatever the dimension, there are universal CA for context free
simulations

@ F is freezing-universal if it is freezing and can simulate
any freezing CA
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Obstacles to Freezing-universality

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem
No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem

No freezing-universal CA for context-free simulations, whatever
the dimension.

Intuition: macro-cell change = simulated state change

Theorem

No 1-change freezing universal in 2D with von Neumann
neighborhood.

Intuition: Jordan’s curves
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Freezing-universality

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

@ information crossing:

@ 2 changes enough in 2D with von Neumann neighb.
e 1 change enough in 3D or 2D with Moore neighb.

@ synchronization (# from aTAM universality)



5 states / von Neumann neighb.

* ] Freezingorder: O, > W, 0 > W
@ Transitions changing the state:

ifO e {n, e, s w}: it{n e s,w}C {H M}
n n )
Q@ vEe Nl e {nes, w} @ vEe— Hifl e {6, w}and
) S
B¢ {n, s}
n
Q@ wEe— il e {e,w}or d
s {ew} @ wEe— HifH ¢ {e,w}and
S

M e {n s}

it {n, e, w} C {W, H}: Wed{ns)
n

n Q@ wHe— HifH e {e,w}and
Q@ mOE~m, = €lew}
m]

s
W c {n s}
n n
(*] wEeHIifle{e,w}, @ wHeo Nl {ns}
s

n
n
OIEIHI. Q@ wHe— Rifle {e,w}
S
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* ] Freezingorder: O, > W, 0 > W
@ Transitions changing the state:
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Corollary
There is x eventually periodic such that F¥(x) is uncomputable.



e Q={0,1}

@ V von Neumann neighb. e

Rule 1

S. Ulam, 1960s
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Rule 1

S. Ulam, 1960s

=

e Q=1{0,1}
@ V von Neumann neighb.
1 if Xz — 1,
Fi(x); =<1 if#(z+ V) =1,
0 else.

@ 1-change + von Neumann = not freezing-universal
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Fact
F1w(1)(xyy) =1& VQ(X) # Vg(y) with Vg(a) = max{i : 2"3}



F(x)









Any guess?
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Rule 1 and 2-automaticity
(with E. Goles, P. Montealegre, V. Salo)
@ x*: base-k representation of x € N
@ X C N is k-automatic if {Y" : x € X} is DFA-recognizable

Theorem (Rowland-Yassawi, 2015)

X is k-automatic IFF it is a column in the space-time diagram of
a linear CA starting from an eventually periodic configuration.

@ same definition for X C Z? using alphabet {0, ..., k — 1}2

1001

-2~ 0010

Claim
For any eventually periodic x, F}’(x) is 2-automatic.
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Questions

@ is “life without death” freezing-universal?

@ is there a bounded-change-universal CA?

© is there a convergent-universal CA?

O what freezing CA have 2-automatic limits starting from
eventually periodic configurations?



