Freezing Cellular Automata Discrete Models of Complex Systems — Le STUDIUM

G. Theyssier

Institut de Mathématiques de Marseille (CNRS, AMU)

20 mars 2018

Definitions

• configurations: $Q^{\mathbb{Z}^{D}}$, Q finite

topology:

$$d(x,y) = 2^{-\min\{\|z\|\in\mathbb{Z}^{D}: x_{z}\neq y_{z}\}}$$

• cellular automaton: $F: Q^{\mathbb{Z}^{D}} \to Q^{\mathbb{Z}^{D}}$

$$\forall z \in \mathbb{Z}^{D}, F(c)_{z} = f(j \in V \mapsto c_{z+j})$$

 $V \subseteq \mathbb{Z}^D$ finite neighborhood, $f: Q^V \to Q$ local rule

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• F is k-change if

$$\forall x, \forall z : \left| \{t \in \mathbb{N} : F^{t+1}(x)_z \neq F^t(x)_z \} \right| \le k$$

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• F is k-change if

$$\forall x, \forall z : \left| \{t \in \mathbb{N} : F^{t+1}(x)_z \neq F^t(x)_z \} \right| \le k$$

• F is convergent if $(F^t(x))_t$ is convergent for all x, *i.e.*

$$\forall x, \exists x_{\infty} : d(F^{t}(x), x_{\infty}) \rightarrow 0$$

• Fixed points: $\Sigma_F = \{x : F(x) = x\}$

• Fixed points: $\Sigma_F = \{x : F(x) = x\}$

•
$$F^{\omega}(x) = \lim_{t \to \infty} F^t(x)$$

• $F^{\omega} : Q^{\mathbb{Z}^2} \to \Sigma_F$

• Fixed points: $\Sigma_F = \{x : F(x) = x\}$

•
$$F^{\omega}(x) = \lim_{t \to \infty} F^{t}(x)$$

- $F^{\omega}: Q^{\mathbb{Z}^2} \to \Sigma_F$
- classical example:
 - $\Sigma =$ your favorite SFT

•
$$\Sigma_F = \Sigma \cup \{\overline{s}\}$$

• F: identity over Σ + spreading state s

• Fixed points: $\Sigma_F = \{x : F(x) = x\}$

•
$$F^{\omega}(x) = \lim_{t \to \infty} F^{t}(x)$$

- $F^{\omega}: Q^{\mathbb{Z}^2} \to \Sigma_F$
- classical example:
 - $\Sigma = your favorite SFT$

•
$$\Sigma_F = \Sigma \cup \{\overline{s}\}$$

F: identity over Σ + spreading state s

General questions

- how long does it take for a cell to freeze?
- how rich can be the transient?
- how complex can be $F^{\omega}(x)$ compared to x ?

Some facts in 1D

(with E. Goles and N. Ollinger)

Some facts in 1D

(with E. Goles and N. Ollinger)

	Freezing	<i>k</i> -change	Convergent
Membership	PTIME	undecidable	undecidable
Turing-universal	YES	YES	YES
Prediction	LOGSPACE	LOGSPACE	P-complete
CC(Prediction)	<i>O</i> (log(<i>n</i>))	$O(\log(n))$	can be $\geq \sqrt{n}$
Nilpotency	decidable	decidable	decidable

Some facts in 1D

(with E. Goles and N. Ollinger)

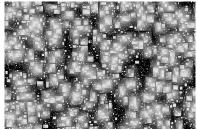
	Freezing	k-change	Convergent
Membership	PTIME	undecidable	undecidable
Turing-universal	YES	YES	YES
Prediction	LOGSPACE	LOGSPACE	P-complete
CC(Prediction)	<i>O</i> (log(<i>n</i>))	<i>O</i> (log(<i>n</i>))	can be $\geq \sqrt{n}$
Nilpotency	decidable	decidable	decidable

Carton-Guillon-Reiter, 2018

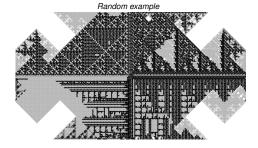
One-way freezing CA recognize the same languages as sumless/copyless counter machines.

2D freezing CA

Bootstrap percolation



SIR propagation models

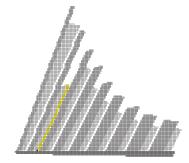




Uncomputable limit points

Theorem (Lathrop-Lutz-Patitz-Summers, 2010)

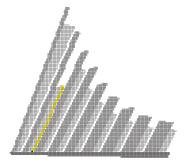
A directed self-assembly aTAM system can do this:



Uncomputable limit points

Theorem (Lathrop-Lutz-Patitz-Summers, 2010)

A directed self-assembly aTAM system can do this:



Corollary

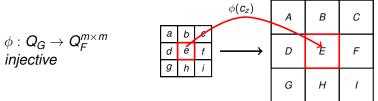
 \exists *F* freezing and *x* finite such that $F^{\omega}(x)$ is uncomputable.

simulated (G)simulator (F)1 cell1 block of $m \times m$ cells1 stepT steps

simulated (G) simulator (F) 1 cell 1 block of $m \times m$ cells

1 step *T* steps

context free:

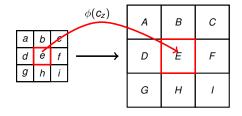


 $\begin{array}{c|c} \text{simulated } (G) & \text{simulator } (F) \\ \hline 1 \text{ cell} & 1 \text{ block of } m \times m \text{ cells} \\ 1 \text{ step} & T \text{ steps} \end{array}$

Context free:

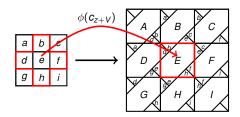
$$\phi: Q_G \rightarrow Q_F^{m \times m}$$

injective



Ontext sensitive:

 $\phi: Q_G^V \to Q_F^{m \times m}$ injective global map



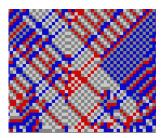
Universality

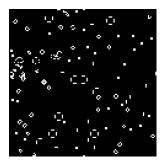
• a CA is universal if it can simulate any other CA

• a CA is universal if it can simulate any other CA

Well-known

Whatever the dimension, there are universal CA for context free simulations

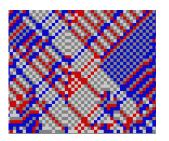




• a CA is universal if it can simulate any other CA

Well-known

Whatever the dimension, there are universal CA for context free simulations





• *F* is **freezing-universal** if it is freezing and can simulate any freezing CA

(with F. Becker, D. Maldonado, N. Ollinger)

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem

No freezing-universal CA for context-free simulations, whatever the dimension.

Intuition: macro-cell change \Rightarrow simulated state change

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem

No freezing-universal CA for context-free simulations, whatever the dimension.

Intuition: macro-cell change \Rightarrow simulated state change

Theorem

No 1-change freezing universal in 2D with von Neumann neighborhood.

Intuition: Jordan's curves

(with F. Becker, D. Maldonado, N. Ollinger)

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

- information crossing:
 - 2 changes enough in 2D with von Neumann neighb.
 - 1 change enough in 3D or 2D with Moore neighb.

(with F. Becker, D. Maldonado, N. Ollinger)

Theorem

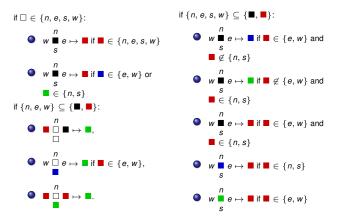
There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

- information crossing:
 - 2 changes enough in 2D with von Neumann neighb.
 - 1 change enough in 3D or 2D with Moore neighb.
- synchronization (\neq from aTAM universality)

5 states / von Neumann neighb.

• Freezing order: \Box , $\blacksquare \ge \blacksquare$, $\blacksquare \ge \blacksquare$

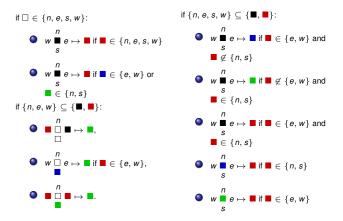
Transitions changing the state:



5 states / von Neumann neighb.

• Freezing order: \Box , $\blacksquare \ge \blacksquare$, $\blacksquare \ge \blacksquare$

Transitions changing the state:



Corollary

There is *x* eventually periodic such that $F^{\omega}(x)$ is uncomputable.

Rule 1

• V von Neumann neighb.

$$F_1(x)_z = \begin{cases} 1 & \text{if } x_z = 1, \\ 1 & \text{if } \#_1(z+V) = 1, \\ 0 & \text{else.} \end{cases}$$

Rule 1

1000

 $\overline{}$

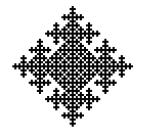
• V von Neumann neighb.

$$F_1(x)_z = \begin{cases} 1 & \text{if } x_z = 1, \\ 1 & \text{if } \#_1(z+V) = 1, \\ 0 & \text{else.} \end{cases}$$

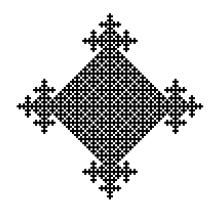
• 1-change + von Neumann \Rightarrow not freezing-universal

.

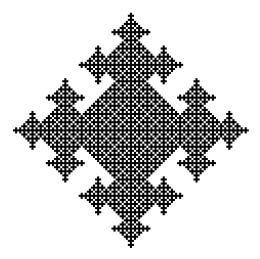
$F_{1}^{\omega}(1)$



$F_{1}^{\omega}(1)$



$F_{1}^{\omega}(1)$

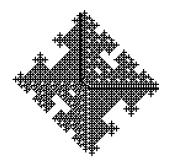


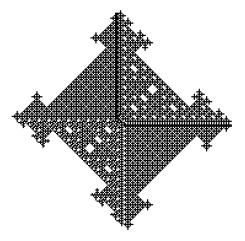
Fact

 $F_1^{\omega}(1)_{(x,y)} = 1 \Leftrightarrow \nu_2(x) \neq \nu_2(y) \text{ with } \nu_2(a) = \max\{i : 2^i | a\}$

 \exists_i

$F_1^{\omega}(x)$





Any guess?

(with E. Goles, P. Montealegre, V. Salo)

- \overline{x}^k : base-*k* representation of $x \in \mathbb{N}$
- $X \subseteq \mathbb{N}$ is *k*-automatic if $\{\overline{x}^k : x \in X\}$ is DFA-recognizable

(with E. Goles, P. Montealegre, V. Salo)

- \overline{x}^k : base-*k* representation of $x \in \mathbb{N}$
- $X \subseteq \mathbb{N}$ is *k*-automatic if $\{\overline{x}^k : x \in X\}$ is DFA-recognizable

Theorem (Rowland-Yassawi, 2015)

X is k-automatic **IFF** it is a column in the space-time diagram of a linear CA starting from an eventually periodic configuration.

(with E. Goles, P. Montealegre, V. Salo)

- \overline{x}^k : base-*k* representation of $x \in \mathbb{N}$
- $X \subseteq \mathbb{N}$ is *k*-automatic if $\{\overline{x}^k : x \in X\}$ is DFA-recognizable

Theorem (Rowland-Yassawi, 2015)

X is k-automatic **IFF** it is a column in the space-time diagram of a linear CA starting from an eventually periodic configuration.

• same definition for $X \subseteq \mathbb{Z}^2$ using alphabet $\{0, \ldots, k-1\}^2$

$$(9,2)\mapsto \frac{1\,0\,0\,1}{0\,0\,1\,0}$$

(with E. Goles, P. Montealegre, V. Salo)

- \overline{x}^k : base-*k* representation of $x \in \mathbb{N}$
- $X \subseteq \mathbb{N}$ is *k*-automatic if $\{\overline{x}^k : x \in X\}$ is DFA-recognizable

Theorem (Rowland-Yassawi, 2015)

X is k-automatic **IFF** it is a column in the space-time diagram of a linear CA starting from an eventually periodic configuration.

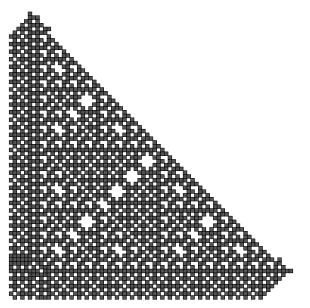
• same definition for $X \subseteq \mathbb{Z}^2$ using alphabet $\{0, \ldots, k-1\}^2$

$$(9,2)\mapsto \frac{1\,0\,0\,1}{0\,0\,1\,0}$$

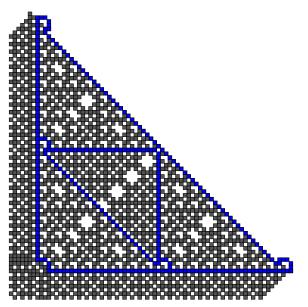
Claim

For any eventually periodic x, $F_1^{\omega}(x)$ is 2-automatic.

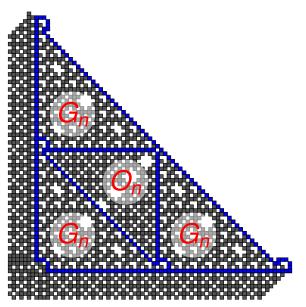
Idea of the proof



Idea of the proof



Idea of the proof



Questions

is "life without death" freezing-universal?

Is there a bounded-change-universal CA?

3 is there a convergent-universal CA?

What freezing CA have 2-automatic limits starting from eventually periodic configurations?