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Definitions

configurations: QZD
, Q finite

topology:
d(x , y) = 2−min{‖z‖∈ZD :xz 6=yz}

cellular automaton: F : QZD → QZD

∀z ∈ ZD,F (c)z = f
(
j ∈ V 7→ cz+j

)
V ⊆ ZD finite neighborhood, f : QV → Q local rule
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Cold dynamics: some definitions

F is freezing if there is an order � on Q s.t.

∀x ,∀z : F (x)z � xz

F is bounded-change if there is B s.t.

∀x ,∀z :
∣∣{t ∈ N : F t+1(x)z 6= F t (x)z}

∣∣ ≤ B

F is convergent if (F t (x))t is convergent for all x , i.e.

∀x ,∃x∞ : d
(
F t (x), x∞

)
→ 0
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Examples

bounded change: nilpotent CA

1-change freezing: Bootstrap percolation, aTAM
self-assembly systems, etc

freezing: forest fire propagation (SIR models) DEMO

majority CA F DEMO

Theorem (Ginosar-Holzman,2000)

F 2 is convergent.

Question

Is F 2 bounded-change?
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Hierarchy
Fact
freezing ( bounded-change ( convergent

clear: freezing ⊆ bounded-change ⊆ convergent

exercise: find F bounded-change but not freezing

convergent & unbounded changes?
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Complexity even in 1D

Goles, Ollinger, Theyssier

there is a Turing universal 1D freezing CA

bounded-change 1D CA have a LOGSPACE prediction
and O(log(n)) communication complexity

there are 1D convergent CA with P-complete prediction
and Ω(

√
n) communication complexity

there are convergent 1D CA with non-recursive limit set
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Nilpotency
F nilpotent if F T is constant for some T .

Nilpotency is undecidable for 2D freezing CA
proof: tile set + spreading state

Lemma
If F is convergent then:
F nilpotent iff F has a unique fixed point.

note: uses nilrigidity of ZD

Corollary
Nilpotency is decidable for 1D convergent CA.

Question
What happens for convergent CA on the free group?
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Simulations

simulated (G) simulator (F )
1 cell 1 block of m ×m cells

1 step T steps

1 context free:

φ : QG → Qm×m
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Universality

a CA is universal if it can simulate any other CA

Fact
Whatever the dimension, there are universal CA for context free
simulations

F is freezing-universal if it is freezing and can simulate
any freezing CA
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Freezing-universality

Becker, Maldonado, Ollinger, Theyssier

Theorem
No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem
No freezing-universal CA for context-free simulations, whatever
the dimension.

Intuition: macro-cell change⇒ simulated state change

Theorem
No 1-change freezing universal in 2D with von Neumann
neighborhood.

Intuition: Jordan’s curve lemma
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Freezing-universality

Theorem
There are freezing-universal CA for context-sensitive simulation
starting from dimension 2.

information crossing:
2 changes enough in 2D with von Neumann neighb.
1 change enough in 3D or 2D with Moore neighb.

synchronization (6= from aTAM universality)
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Freezing-universality
About the proof

reduction to von Neumann neighborhood
states coded in unary
wires are fuses
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About the proof
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Simulating more

what non-freezing CA can be simulated by freezing CAs?

easy: only bounded-change CAs

open: all bounded change CAs?

e : QZd → {0, . . . , k}Zd
is an explicit local energy for F if

1 continuous and shift-commuting
2 e(F (c))z ≤ e(c)z
3 F (c)z 6= cz ⇒ e(F (c))z < e(c)z .

Theorem
F is (context-sensitively) simulated by some freezing CA
IFF it admits an explicit local energy.
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Questions

1 all bounded-change CA have an explicit local energy?

2 is there a bounded-change-universal CA?

3 is there a convergent-universal CA?

4 what are limit sets of bounded-change CAs?


