On Cold Universality in Cellular Automata Universidad Adolfo Ibañez

G. Theyssier

Institut de Mathématiques de Marseille (CNRS, AMU)

6/12/2017

Definitions

• configurations: $Q^{\mathbb{Z}^{D}}$, Q finite

topology:

$$d(x,y) = 2^{-\min\{\|z\|\in\mathbb{Z}^{D}: x_{z}\neq y_{z}\}}$$

• cellular automaton: $F: Q^{\mathbb{Z}^{D}} \to Q^{\mathbb{Z}^{D}}$

$$\forall z \in \mathbb{Z}^{D}, F(c)_{z} = f(j \in V \mapsto c_{z+j})$$

 $V \subseteq \mathbb{Z}^D$ finite neighborhood, $f : Q^V \to Q$ local rule

Hot dynamics

Allumer le feu !

Allumer le feu !

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• *F* is **bounded-change** if there is *B* s.t.

$$\forall x, \forall z : \left| \{t \in \mathbb{N} : F^{t+1}(x)_z \neq F^t(x)_z \} \right| \le B$$

• *F* is **freezing** if there is an order \leq on *Q* s.t.

$$\forall x, \forall z : F(x)_z \leq x_z$$

• F is **bounded-change** if there is B s.t.

$$\forall x, \forall z : \left| \{t \in \mathbb{N} : F^{t+1}(x)_z \neq F^t(x)_z \} \right| \le B$$

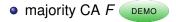
• F is convergent if $(F^t(x))_t$ is convergent for all x, *i.e.*

$$\forall x, \exists x_{\infty} : d(F^{t}(x), x_{\infty}) \rightarrow 0$$

- bounded change: nilpotent CA
- 1-change freezing: Bootstrap percolation, aTAM self-assembly systems, etc

- bounded change: nilpotent CA
- 1-change freezing: Bootstrap percolation, aTAM self-assembly systems, etc
- freezing: forest fire propagation (SIR models)

- bounded change: nilpotent CA
- 1-change freezing: Bootstrap percolation, aTAM self-assembly systems, etc
- freezing: forest fire propagation (SIR models)



- bounded change: nilpotent CA
- 1-change freezing: Bootstrap percolation, aTAM self-assembly systems, etc
- freezing: forest fire propagation (SIR models)
- majority CA F

Theorem (Ginosar-Holzman,2000) F^2 is convergent.

- bounded change: nilpotent CA
- 1-change freezing: Bootstrap percolation, aTAM self-assembly systems, etc
- freezing: forest fire propagation (SIR models)
- majority CA F

Theorem (Ginosar-Holzman,2000) F^2 is convergent.

Question

Is F² bounded-change?

Fact

$\mathsf{freezing} \subsetneq \mathsf{bounded}\mathsf{-}\mathsf{change} \subsetneq \mathsf{convergent}$

• *clear:* freezing \subseteq bounded-change \subseteq convergent

Fact

$\mathsf{freezing} \subsetneq \mathsf{bounded}\mathsf{-}\mathsf{change} \subsetneq \mathsf{convergent}$

- *clear:* freezing \subseteq bounded-change \subseteq convergent
- exercise: find F bounded-change but not freezing

Fact

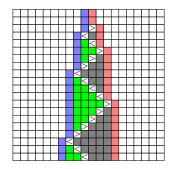
$\mathsf{freezing} \subsetneq \mathsf{bounded}\mathsf{-}\mathsf{change} \subsetneq \mathsf{convergent}$

- *clear:* freezing \subseteq bounded-change \subseteq convergent
- exercise: find F bounded-change but not freezing
- convergent & unbounded changes?

Fact

$\mathsf{freezing} \subsetneq \mathsf{bounded}\mathsf{-}\mathsf{change} \subsetneq \mathsf{convergent}$

- *clear:* freezing \subseteq bounded-change \subseteq convergent
- exercise: find F bounded-change but not freezing
- onvergent & unbounded changes?



Complexity even in 1D

Complexity even in 1D

Goles, Ollinger, Theyssier

- there is a Turing universal 1D freezing CA
- bounded-change 1D CA have a LOGSPACE prediction and O(log(n)) communication complexity
- there are 1D convergent CA with P-complete prediction and Ω(√n) communication complexity
- there are convergent 1D CA with non-recursive limit set

• F nilpotent if F^T is constant for some T.

- F nilpotent if F^T is constant for some T.
- Nilpotency is **undecidable** for 2D freezing CA

proof: tile set + spreading state

- F nilpotent if F^T is constant for some T.
- Nilpotency is undecidable for 2D freezing CA

proof: tile set + spreading state

Lemma

If F is convergent then: F nilpotent **iff** F has a unique fixed point.

note: uses nilrigidity of \mathbb{Z}^{D}

- F nilpotent if F^T is constant for some T.
- Nilpotency is undecidable for 2D freezing CA

proof: tile set + spreading state

Lemma

If F is convergent then: F nilpotent **iff** F has a unique fixed point.

note: uses nilrigidity of \mathbb{Z}^{D}

Corollary

Nilpotency is decidable for 1D convergent CA.

- F nilpotent if F^T is constant for some T.
- Nilpotency is undecidable for 2D freezing CA

proof: tile set + spreading state

Lemma

If F is convergent then: F nilpotent **iff** F has a unique fixed point.

note: uses nilrigidity of \mathbb{Z}^D

Corollary

Nilpotency is **decidable** for 1D convergent CA.

Question

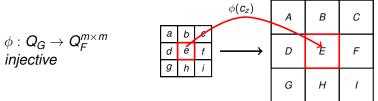
What happens for convergent CA on the free group?

simulated (G)simulator (F)1 cell1 block of $m \times m$ cells1 stepT steps

simulated (G) simulator (F) 1 cell 1 block of $m \times m$ cells

1 step *T* steps

context free:

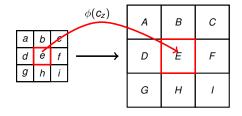


 $\begin{array}{c|c} \text{simulated } (G) & \text{simulator } (F) \\ \hline 1 \text{ cell} & 1 \text{ block of } m \times m \text{ cells} \\ 1 \text{ step} & T \text{ steps} \end{array}$

Context free:

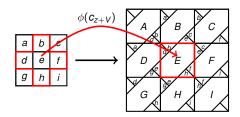
$$\phi: Q_G \rightarrow Q_F^{m \times m}$$

injective



Ontext sensitive:

 $\phi: Q_G^V \to Q_F^{m \times m}$ injective global map



Universality

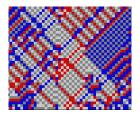
• a CA is universal if it can simulate any other CA

Universality

• a CA is universal if it can simulate any other CA

Fact

Whatever the dimension, there are universal CA for context free simulations

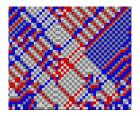


Universality

• a CA is universal if it can simulate any other CA

Fact

Whatever the dimension, there are universal CA for context free simulations



• *F* is **freezing-universal** if it is freezing and can simulate any freezing CA

Freezing-universality

Becker, Maldonado, Ollinger, Theyssier

Freezing-universality

Becker, Maldonado, Ollinger, Theyssier

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Freezing-universality

Becker, Maldonado, Ollinger, Theyssier

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem

No freezing-universal CA for context-free simulations, whatever the dimension.

Intuition: macro-cell change \Rightarrow simulated state change

Becker, Maldonado, Ollinger, Theyssier

Theorem

No freezing-universal CA in 1D, whatever the simulation mode.

Intuition: blocking words

Theorem

No freezing-universal CA for context-free simulations, whatever the dimension.

Intuition: macro-cell change \Rightarrow simulated state change

Theorem

No 1-change freezing universal in 2D with von Neumann neighborhood.

Intuition: Jordan's curve lemma

Theorem

There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

Theorem

There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

- information crossing:
 - 2 changes enough in 2D with von Neumann neighb.
 - 1 change enough in 3D or 2D with Moore neighb.

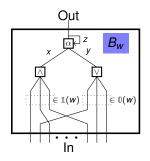
Theorem

There are freezing-universal CA for context-sensitive simulation starting from dimension 2.

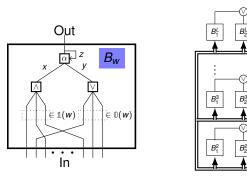
- information crossing:
 - 2 changes enough in 2D with von Neumann neighb.
 - 1 change enough in 3D or 2D with Moore neighb.
- synchronization (\neq from aTAM universality)

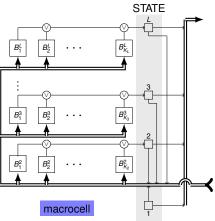
- reduction to von Neumann neighborhood
- states coded in unary
- wires are fuses

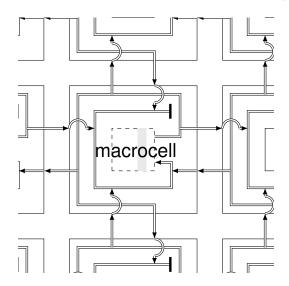
- reduction to von Neumann neighborhood
- states coded in unary
- wires are fuses



- reduction to von Neumann neighborhood
- states coded in unary
- wires are fuses







what non-freezing CA can be simulated by freezing CAs?

- what non-freezing CA can be simulated by freezing CAs?
- easy: only bounded-change CAs

- what non-freezing CA can be simulated by freezing CAs?
- easy: only bounded-change CAs
- open: all bounded change CAs?

- what non-freezing CA can be simulated by freezing CAs?
- easy: only bounded-change CAs
- open: all bounded change CAs?

- what non-freezing CA can be simulated by freezing CAs?
- easy: only bounded-change CAs
- open: all bounded change CAs?

Theorem

F is (context-sensitively) simulated by some freezing CA **IFF** it admits an explicit local energy.

Questions

Il bounded-change CA have an explicit local energy?

Is there a bounded-change-universal CA?

is there a convergent-universal CA?

What are limit sets of bounded-change CAs?