Introducing freezing cellular automata Taller @ Concepción

G. Theyssier

(CNRS, CMM)

October, 2013

Forewords

• everything in 2D

work in progress

• joint research with E. Goles

Threshold rules

• alphabet
$$Q = \{0, 1\}$$

- neighborhood *N* arbitrary
- rule with threshold θ

$$F(x)_{(0,0)} = \begin{cases} 0 & \text{if } x_{(0,0)} = 0 \text{ and } \# \{ z \in N : x_z = 1 \} < \theta \\ 1 & \text{else} \end{cases}$$

limit fixed point

$$F^{\infty}(x) = \lim_{t \to \infty} F^t(x)$$

Threshold rules

Bootstrap percolation

- fix 0 ≤ p ≤ 1
- Bernoulli distribution: 1 with probability p
- Bootstrap percolation happens, denoted $\mathbb{B}(p)$, if

$$\mu\bigl(\{\boldsymbol{x}:\boldsymbol{F}^{\infty}(\boldsymbol{x})=\boldsymbol{1}^{\mathbb{Z}^2}\}\bigr)=\boldsymbol{1}$$

• Lemma: if $p \le p'$ then $\mathbb{B}(p) \Rightarrow \mathbb{B}(p')$

A central question

What is the critical probability $\inf\{p : \mathbb{B}(p)\}$?

Threshold rules Criticality

3 behaviors for a threshold rule F:
hypercritical finite seed of 1s

 $\exists x \text{ finite s.t. } F^{\infty}(x) \text{ is infinite}$

subcritical finite alliance of 0s

 $\exists x \text{ co-finite s.t. } F(x) = x$

critical other cases

Proposition

- hypercritical \Rightarrow critical probability is 0
- subcritical \Rightarrow critical probability is 1

Threshold rules

Bootstrap percolation results

• criticality is completely determined

- Gravner-Griffeath 1996
- simple geometrical/combinatorial conditions on N and θ
- polynomial algorithm
- a large class of critical rules all behave the same way

Theorem (Duminil-Holroyd,2012)

If *F* is critical with a "nice" *N* then critical probability is 0.

Threshold rules

Bootstrap percolation results

• criticality is completely determined

- Gravner-Griffeath 1996
- simple geometrical/combinatorial conditions on N and θ
- polynomial algorithm
- a large class of critical rules all behave the same way

Theorem (Duminil-Holroyd,2012)

If F is critical with a "nice" N then critical probability is 0.

I don't know...

Is there a critical *F* with critical probability \neq 0?

 (T, s, τ)

• T is a Wang tileset with strengths: on each edge

- a label (matching condition)
- 2 an integer (matching strength)
- $\tau > 0$ is the **temperature**
- an assembly of tiles is *τ*-stable if separating it into 2 parts implies removing a set of matching edges with total strength at least *τ*
- s is a τ -stable finite assembly
- dynamics:
 - starting from s
 - $a \rightarrow a'$ by adding a tile to *a* that preserves au-stability

Computational power

- general model Turing-universal in 2D (Winfree, 1998)
- temperature 1

Theorem (Cook-Fu-Schweller, 2011)

Temperature 1 self-assembly is Turing-universal in 3D

A central question

What is the computational power of (2D) temperature 1?

• Warning! asynchronous systems

what is a valid simulation? what is universality?

Simulations and universality

Biblio

- Doty-Lutz-Patitz-Schweller-Summers-Woods-(Meunier-Theyssier)
- STACS 2010, FOCS 2012, SODA 2013

Simulations and universality

Biblio

- Doty-Lutz-Patitz-Schweller-Summers-Woods-(Meunier-Theyssier)
- STACS 2010, FOCS 2012, SODA 2013
- Definition
 - block encoding

$$\mathbb{Z}^2 \leftrightarrow (m\mathbb{Z}) \times (p\mathbb{Z})$$

 $\mathsf{empty} \; \mathsf{cell} \leftrightarrow \mathsf{empty} \; \mathsf{block} \; (\mathsf{exception!})$

Simulations and universality

Biblio

- Doty-Lutz-Patitz-Schweller-Summers-Woods-(Meunier-Theyssier)
- STACS 2010, FOCS 2012, SODA 2013
- Definition

1

block encoding

$$\mathbb{Z}^2 \ \leftrightarrow \ (m\mathbb{Z}) \times (p\mathbb{Z})$$

empty cell \leftrightarrow empty block (exception!)

3 requirements:

- same productions (through encoding)
- same dynamics (through encoding) not clear!

Simulations and universality

with a strong notion of "same dynamics"

Theorem (USA crew, 2012)

There is an intrinsically universal tile set at temperature 2.

Simulations and universality

with a strong notion of "same dynamics"

Theorem (USA crew, 2012)

There is an intrinsically universal tile set at temperature 2.

• using only requirement of "same productions"

Theorem (USA crew + Meunier-Theyssier, 2013) No temperature 1 tile set can be intrinsically universal.

- $Q = \{0, \dots, n-1\}$ with natural order \leq
- N arbitrary neighborhood
- F is freezing if

 $\forall x, \forall z : F(x)_z \ge x_z$

- $Q = \{0, \dots, n-1\}$ with natural order \leq
- N arbitrary neighborhood
- F is freezing if

$$\forall x, \forall z : F(x)_z \geq x_z$$

limit fixed point always defined

$$F^{\infty}(x) = \lim_{t \to \infty} F^t(x)$$

- *special case: F* is **monotonic** wrt ≤
- special case: F is outer-multiset if invariant by permutation of outer neighbors

Freezing cellular automata Examples

threshold CA are monotonic outer-multiset freezing

• self-assembly systems are freezing (asynchronous) CA

- other examples (outer-multiset freezing):
 - infection propagation (SIR models)
 - Iife without death

Predictability

• kind of poor dynamically (convergence to fixed-point)

Predictability

- kind of poor dynamically (convergence to fixed-point)
- ...but P-complete for prediction problem,
 - embed any 1D P-complete CA
 - life without death is P-complete (???)

Predictability

- kind of poor dynamically (convergence to fixed-point)
- ...but P-complete for prediction problem,
 - embed any 1D P-complete CA
 - life without death is P-complete (???)
- ...but prediction has low communication complexity

Proposition

The prediction problem of any freezing CA has communication complexity in $O(n \log(n))$

recall: for a general CA this can be $\Omega(n^2)$

Bootstrap percolation

• **problem:** probability that $F^{\infty}(x)$ is uniformly n - 1?

Bootstrap percolation

- **problem:** probability that $F^{\infty}(x)$ is uniformly n 1?
- generalized definition of criticality:
 - hypercritical

finite seed generates infinitely many n-1in any context

subcritical

finite alliance of states \neq from n-1 resistant to any context

critical

other cases

Bootstrap percolation

- **problem:** probability that $F^{\infty}(x)$ is uniformly n 1?
- generalized definition of criticality:
 - hypercritical

finite seed generates infinitely many n-1in any context

subcritical

finite alliance of states \neq from n-1 resistant to any context

critical

other cases

Proposition

Each property among hypercriticality, subcriticality and criticality is undecidable for freezing CA

Bootstrap percolation

Proposition

The general bootstrap percolation problem:

- input: CA + Bernouilli distribution
- question: percolation with probability 1?

is also **undecidable**.

Bootstrap percolation

Proposition

The general bootstrap percolation problem:

- input: CA + Bernouilli distribution
- question: percolation with probability 1?

is also undecidable.

Conjecture

• Hypercriticality, subcriticality and criticality are **decidable** for monotonic outer-multiset freezing CA

Bootstrap percolation

Proposition

The general bootstrap percolation problem:

- input: CA + Bernouilli distribution
- question: percolation with probability 1?

is also undecidable.

Conjecture

• Hypercriticality, subcriticality and criticality are **decidable** for monotonic outer-multiset freezing CA

Questions

- same problem with monotonic freezing CA?
- 2 same problem with outer-multiset freezing CA?
- O critical rules with non-zero critical probability?
- Inon-monotonicity of the percolation probability?

Simulation and universality

- how rich are the dynamics of freezing CA?
- are freezing CA richer than self-assembly tilings?
- key point: max number of changes per cell

Simulation and universality

- how rich are the dynamics of freezing CA?
- are freezing CA richer than self-assembly tilings?
- key point: max number of changes per cell

Proposition

No 1-change von Neumann freezing CA can simulate all freezing CA.

• **Corollary:** self-assembly tilings cannot simulate all freezing behaviors

Simulation and universality

Conjectures

- there is a 2-changes von Neumann freezing CA universal for all freezing CA
- On there is a 1-change freezing CA of larger radius which is universal for all freezing CA
- On there is a 1-change von Neumann freezing CA universal for all 1-change von Neumann freezing CA and it can be chosen as a self-assembly tiling

 also: outer-multiset? monotonicity? 3D? clean definitions of simulations? etc

